Properties

Label 366.2.a.h.1.1
Level $366$
Weight $2$
Character 366.1
Self dual yes
Analytic conductor $2.923$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [366,2,Mod(1,366)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(366, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("366.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 366 = 2 \cdot 3 \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 366.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.92252471398\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 366.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -4.12311 q^{5} +1.00000 q^{6} -3.56155 q^{7} -1.00000 q^{8} +1.00000 q^{9} +4.12311 q^{10} +3.56155 q^{11} -1.00000 q^{12} +5.56155 q^{13} +3.56155 q^{14} +4.12311 q^{15} +1.00000 q^{16} +0.561553 q^{17} -1.00000 q^{18} +4.00000 q^{19} -4.12311 q^{20} +3.56155 q^{21} -3.56155 q^{22} -5.00000 q^{23} +1.00000 q^{24} +12.0000 q^{25} -5.56155 q^{26} -1.00000 q^{27} -3.56155 q^{28} -5.12311 q^{29} -4.12311 q^{30} +4.00000 q^{31} -1.00000 q^{32} -3.56155 q^{33} -0.561553 q^{34} +14.6847 q^{35} +1.00000 q^{36} -3.68466 q^{37} -4.00000 q^{38} -5.56155 q^{39} +4.12311 q^{40} +9.56155 q^{41} -3.56155 q^{42} -2.56155 q^{43} +3.56155 q^{44} -4.12311 q^{45} +5.00000 q^{46} +7.12311 q^{47} -1.00000 q^{48} +5.68466 q^{49} -12.0000 q^{50} -0.561553 q^{51} +5.56155 q^{52} +9.12311 q^{53} +1.00000 q^{54} -14.6847 q^{55} +3.56155 q^{56} -4.00000 q^{57} +5.12311 q^{58} -6.43845 q^{59} +4.12311 q^{60} +1.00000 q^{61} -4.00000 q^{62} -3.56155 q^{63} +1.00000 q^{64} -22.9309 q^{65} +3.56155 q^{66} -3.31534 q^{67} +0.561553 q^{68} +5.00000 q^{69} -14.6847 q^{70} +13.9309 q^{71} -1.00000 q^{72} +16.3693 q^{73} +3.68466 q^{74} -12.0000 q^{75} +4.00000 q^{76} -12.6847 q^{77} +5.56155 q^{78} -12.9309 q^{79} -4.12311 q^{80} +1.00000 q^{81} -9.56155 q^{82} -10.8078 q^{83} +3.56155 q^{84} -2.31534 q^{85} +2.56155 q^{86} +5.12311 q^{87} -3.56155 q^{88} +15.6847 q^{89} +4.12311 q^{90} -19.8078 q^{91} -5.00000 q^{92} -4.00000 q^{93} -7.12311 q^{94} -16.4924 q^{95} +1.00000 q^{96} -3.43845 q^{97} -5.68466 q^{98} +3.56155 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{6} - 3 q^{7} - 2 q^{8} + 2 q^{9} + 3 q^{11} - 2 q^{12} + 7 q^{13} + 3 q^{14} + 2 q^{16} - 3 q^{17} - 2 q^{18} + 8 q^{19} + 3 q^{21} - 3 q^{22} - 10 q^{23} + 2 q^{24}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −4.12311 −1.84391 −0.921954 0.387298i \(-0.873408\pi\)
−0.921954 + 0.387298i \(0.873408\pi\)
\(6\) 1.00000 0.408248
\(7\) −3.56155 −1.34614 −0.673070 0.739579i \(-0.735025\pi\)
−0.673070 + 0.739579i \(0.735025\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 4.12311 1.30384
\(11\) 3.56155 1.07385 0.536924 0.843630i \(-0.319586\pi\)
0.536924 + 0.843630i \(0.319586\pi\)
\(12\) −1.00000 −0.288675
\(13\) 5.56155 1.54250 0.771249 0.636534i \(-0.219633\pi\)
0.771249 + 0.636534i \(0.219633\pi\)
\(14\) 3.56155 0.951865
\(15\) 4.12311 1.06458
\(16\) 1.00000 0.250000
\(17\) 0.561553 0.136197 0.0680983 0.997679i \(-0.478307\pi\)
0.0680983 + 0.997679i \(0.478307\pi\)
\(18\) −1.00000 −0.235702
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) −4.12311 −0.921954
\(21\) 3.56155 0.777195
\(22\) −3.56155 −0.759326
\(23\) −5.00000 −1.04257 −0.521286 0.853382i \(-0.674548\pi\)
−0.521286 + 0.853382i \(0.674548\pi\)
\(24\) 1.00000 0.204124
\(25\) 12.0000 2.40000
\(26\) −5.56155 −1.09071
\(27\) −1.00000 −0.192450
\(28\) −3.56155 −0.673070
\(29\) −5.12311 −0.951337 −0.475668 0.879625i \(-0.657794\pi\)
−0.475668 + 0.879625i \(0.657794\pi\)
\(30\) −4.12311 −0.752773
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) −1.00000 −0.176777
\(33\) −3.56155 −0.619987
\(34\) −0.561553 −0.0963055
\(35\) 14.6847 2.48216
\(36\) 1.00000 0.166667
\(37\) −3.68466 −0.605754 −0.302877 0.953030i \(-0.597947\pi\)
−0.302877 + 0.953030i \(0.597947\pi\)
\(38\) −4.00000 −0.648886
\(39\) −5.56155 −0.890561
\(40\) 4.12311 0.651920
\(41\) 9.56155 1.49326 0.746632 0.665237i \(-0.231670\pi\)
0.746632 + 0.665237i \(0.231670\pi\)
\(42\) −3.56155 −0.549560
\(43\) −2.56155 −0.390633 −0.195317 0.980740i \(-0.562573\pi\)
−0.195317 + 0.980740i \(0.562573\pi\)
\(44\) 3.56155 0.536924
\(45\) −4.12311 −0.614636
\(46\) 5.00000 0.737210
\(47\) 7.12311 1.03901 0.519506 0.854467i \(-0.326116\pi\)
0.519506 + 0.854467i \(0.326116\pi\)
\(48\) −1.00000 −0.144338
\(49\) 5.68466 0.812094
\(50\) −12.0000 −1.69706
\(51\) −0.561553 −0.0786331
\(52\) 5.56155 0.771249
\(53\) 9.12311 1.25315 0.626577 0.779359i \(-0.284455\pi\)
0.626577 + 0.779359i \(0.284455\pi\)
\(54\) 1.00000 0.136083
\(55\) −14.6847 −1.98008
\(56\) 3.56155 0.475933
\(57\) −4.00000 −0.529813
\(58\) 5.12311 0.672697
\(59\) −6.43845 −0.838214 −0.419107 0.907937i \(-0.637657\pi\)
−0.419107 + 0.907937i \(0.637657\pi\)
\(60\) 4.12311 0.532291
\(61\) 1.00000 0.128037
\(62\) −4.00000 −0.508001
\(63\) −3.56155 −0.448713
\(64\) 1.00000 0.125000
\(65\) −22.9309 −2.84422
\(66\) 3.56155 0.438397
\(67\) −3.31534 −0.405033 −0.202517 0.979279i \(-0.564912\pi\)
−0.202517 + 0.979279i \(0.564912\pi\)
\(68\) 0.561553 0.0680983
\(69\) 5.00000 0.601929
\(70\) −14.6847 −1.75515
\(71\) 13.9309 1.65329 0.826645 0.562724i \(-0.190247\pi\)
0.826645 + 0.562724i \(0.190247\pi\)
\(72\) −1.00000 −0.117851
\(73\) 16.3693 1.91588 0.957942 0.286963i \(-0.0926455\pi\)
0.957942 + 0.286963i \(0.0926455\pi\)
\(74\) 3.68466 0.428333
\(75\) −12.0000 −1.38564
\(76\) 4.00000 0.458831
\(77\) −12.6847 −1.44555
\(78\) 5.56155 0.629722
\(79\) −12.9309 −1.45484 −0.727418 0.686194i \(-0.759280\pi\)
−0.727418 + 0.686194i \(0.759280\pi\)
\(80\) −4.12311 −0.460977
\(81\) 1.00000 0.111111
\(82\) −9.56155 −1.05590
\(83\) −10.8078 −1.18631 −0.593153 0.805090i \(-0.702117\pi\)
−0.593153 + 0.805090i \(0.702117\pi\)
\(84\) 3.56155 0.388597
\(85\) −2.31534 −0.251134
\(86\) 2.56155 0.276219
\(87\) 5.12311 0.549255
\(88\) −3.56155 −0.379663
\(89\) 15.6847 1.66257 0.831285 0.555846i \(-0.187606\pi\)
0.831285 + 0.555846i \(0.187606\pi\)
\(90\) 4.12311 0.434613
\(91\) −19.8078 −2.07642
\(92\) −5.00000 −0.521286
\(93\) −4.00000 −0.414781
\(94\) −7.12311 −0.734692
\(95\) −16.4924 −1.69209
\(96\) 1.00000 0.102062
\(97\) −3.43845 −0.349121 −0.174561 0.984646i \(-0.555851\pi\)
−0.174561 + 0.984646i \(0.555851\pi\)
\(98\) −5.68466 −0.574237
\(99\) 3.56155 0.357950
\(100\) 12.0000 1.20000
\(101\) 6.24621 0.621521 0.310761 0.950488i \(-0.399416\pi\)
0.310761 + 0.950488i \(0.399416\pi\)
\(102\) 0.561553 0.0556020
\(103\) 4.56155 0.449463 0.224732 0.974421i \(-0.427849\pi\)
0.224732 + 0.974421i \(0.427849\pi\)
\(104\) −5.56155 −0.545355
\(105\) −14.6847 −1.43308
\(106\) −9.12311 −0.886114
\(107\) 8.56155 0.827677 0.413838 0.910350i \(-0.364188\pi\)
0.413838 + 0.910350i \(0.364188\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 6.43845 0.616691 0.308346 0.951274i \(-0.400225\pi\)
0.308346 + 0.951274i \(0.400225\pi\)
\(110\) 14.6847 1.40013
\(111\) 3.68466 0.349732
\(112\) −3.56155 −0.336535
\(113\) 1.56155 0.146899 0.0734493 0.997299i \(-0.476599\pi\)
0.0734493 + 0.997299i \(0.476599\pi\)
\(114\) 4.00000 0.374634
\(115\) 20.6155 1.92241
\(116\) −5.12311 −0.475668
\(117\) 5.56155 0.514166
\(118\) 6.43845 0.592707
\(119\) −2.00000 −0.183340
\(120\) −4.12311 −0.376386
\(121\) 1.68466 0.153151
\(122\) −1.00000 −0.0905357
\(123\) −9.56155 −0.862136
\(124\) 4.00000 0.359211
\(125\) −28.8617 −2.58147
\(126\) 3.56155 0.317288
\(127\) −14.8078 −1.31398 −0.656988 0.753901i \(-0.728170\pi\)
−0.656988 + 0.753901i \(0.728170\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 2.56155 0.225532
\(130\) 22.9309 2.01117
\(131\) −5.68466 −0.496671 −0.248335 0.968674i \(-0.579884\pi\)
−0.248335 + 0.968674i \(0.579884\pi\)
\(132\) −3.56155 −0.309993
\(133\) −14.2462 −1.23530
\(134\) 3.31534 0.286402
\(135\) 4.12311 0.354860
\(136\) −0.561553 −0.0481528
\(137\) 18.0540 1.54246 0.771228 0.636559i \(-0.219643\pi\)
0.771228 + 0.636559i \(0.219643\pi\)
\(138\) −5.00000 −0.425628
\(139\) 13.4924 1.14441 0.572206 0.820110i \(-0.306088\pi\)
0.572206 + 0.820110i \(0.306088\pi\)
\(140\) 14.6847 1.24108
\(141\) −7.12311 −0.599874
\(142\) −13.9309 −1.16905
\(143\) 19.8078 1.65641
\(144\) 1.00000 0.0833333
\(145\) 21.1231 1.75418
\(146\) −16.3693 −1.35473
\(147\) −5.68466 −0.468863
\(148\) −3.68466 −0.302877
\(149\) 8.43845 0.691305 0.345652 0.938363i \(-0.387658\pi\)
0.345652 + 0.938363i \(0.387658\pi\)
\(150\) 12.0000 0.979796
\(151\) −2.68466 −0.218474 −0.109237 0.994016i \(-0.534841\pi\)
−0.109237 + 0.994016i \(0.534841\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0.561553 0.0453989
\(154\) 12.6847 1.02216
\(155\) −16.4924 −1.32470
\(156\) −5.56155 −0.445281
\(157\) −7.75379 −0.618820 −0.309410 0.950929i \(-0.600131\pi\)
−0.309410 + 0.950929i \(0.600131\pi\)
\(158\) 12.9309 1.02872
\(159\) −9.12311 −0.723509
\(160\) 4.12311 0.325960
\(161\) 17.8078 1.40345
\(162\) −1.00000 −0.0785674
\(163\) −1.75379 −0.137367 −0.0686837 0.997638i \(-0.521880\pi\)
−0.0686837 + 0.997638i \(0.521880\pi\)
\(164\) 9.56155 0.746632
\(165\) 14.6847 1.14320
\(166\) 10.8078 0.838845
\(167\) 4.24621 0.328582 0.164291 0.986412i \(-0.447466\pi\)
0.164291 + 0.986412i \(0.447466\pi\)
\(168\) −3.56155 −0.274780
\(169\) 17.9309 1.37930
\(170\) 2.31534 0.177579
\(171\) 4.00000 0.305888
\(172\) −2.56155 −0.195317
\(173\) −3.75379 −0.285395 −0.142698 0.989766i \(-0.545578\pi\)
−0.142698 + 0.989766i \(0.545578\pi\)
\(174\) −5.12311 −0.388382
\(175\) −42.7386 −3.23074
\(176\) 3.56155 0.268462
\(177\) 6.43845 0.483943
\(178\) −15.6847 −1.17561
\(179\) −15.6847 −1.17233 −0.586163 0.810193i \(-0.699362\pi\)
−0.586163 + 0.810193i \(0.699362\pi\)
\(180\) −4.12311 −0.307318
\(181\) 22.8078 1.69529 0.847644 0.530566i \(-0.178020\pi\)
0.847644 + 0.530566i \(0.178020\pi\)
\(182\) 19.8078 1.46825
\(183\) −1.00000 −0.0739221
\(184\) 5.00000 0.368605
\(185\) 15.1922 1.11696
\(186\) 4.00000 0.293294
\(187\) 2.00000 0.146254
\(188\) 7.12311 0.519506
\(189\) 3.56155 0.259065
\(190\) 16.4924 1.19649
\(191\) 3.31534 0.239890 0.119945 0.992781i \(-0.461728\pi\)
0.119945 + 0.992781i \(0.461728\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 12.8769 0.926899 0.463450 0.886123i \(-0.346612\pi\)
0.463450 + 0.886123i \(0.346612\pi\)
\(194\) 3.43845 0.246866
\(195\) 22.9309 1.64211
\(196\) 5.68466 0.406047
\(197\) −6.19224 −0.441179 −0.220589 0.975367i \(-0.570798\pi\)
−0.220589 + 0.975367i \(0.570798\pi\)
\(198\) −3.56155 −0.253109
\(199\) 7.43845 0.527298 0.263649 0.964619i \(-0.415074\pi\)
0.263649 + 0.964619i \(0.415074\pi\)
\(200\) −12.0000 −0.848528
\(201\) 3.31534 0.233846
\(202\) −6.24621 −0.439482
\(203\) 18.2462 1.28063
\(204\) −0.561553 −0.0393166
\(205\) −39.4233 −2.75344
\(206\) −4.56155 −0.317818
\(207\) −5.00000 −0.347524
\(208\) 5.56155 0.385624
\(209\) 14.2462 0.985431
\(210\) 14.6847 1.01334
\(211\) −24.4924 −1.68613 −0.843064 0.537813i \(-0.819251\pi\)
−0.843064 + 0.537813i \(0.819251\pi\)
\(212\) 9.12311 0.626577
\(213\) −13.9309 −0.954527
\(214\) −8.56155 −0.585256
\(215\) 10.5616 0.720292
\(216\) 1.00000 0.0680414
\(217\) −14.2462 −0.967096
\(218\) −6.43845 −0.436067
\(219\) −16.3693 −1.10614
\(220\) −14.6847 −0.990039
\(221\) 3.12311 0.210083
\(222\) −3.68466 −0.247298
\(223\) 3.56155 0.238499 0.119250 0.992864i \(-0.461951\pi\)
0.119250 + 0.992864i \(0.461951\pi\)
\(224\) 3.56155 0.237966
\(225\) 12.0000 0.800000
\(226\) −1.56155 −0.103873
\(227\) −11.5616 −0.767367 −0.383684 0.923465i \(-0.625345\pi\)
−0.383684 + 0.923465i \(0.625345\pi\)
\(228\) −4.00000 −0.264906
\(229\) −21.8078 −1.44110 −0.720549 0.693404i \(-0.756110\pi\)
−0.720549 + 0.693404i \(0.756110\pi\)
\(230\) −20.6155 −1.35935
\(231\) 12.6847 0.834589
\(232\) 5.12311 0.336348
\(233\) 5.12311 0.335626 0.167813 0.985819i \(-0.446330\pi\)
0.167813 + 0.985819i \(0.446330\pi\)
\(234\) −5.56155 −0.363570
\(235\) −29.3693 −1.91584
\(236\) −6.43845 −0.419107
\(237\) 12.9309 0.839950
\(238\) 2.00000 0.129641
\(239\) 11.3693 0.735420 0.367710 0.929941i \(-0.380142\pi\)
0.367710 + 0.929941i \(0.380142\pi\)
\(240\) 4.12311 0.266145
\(241\) −19.4924 −1.25562 −0.627809 0.778368i \(-0.716048\pi\)
−0.627809 + 0.778368i \(0.716048\pi\)
\(242\) −1.68466 −0.108294
\(243\) −1.00000 −0.0641500
\(244\) 1.00000 0.0640184
\(245\) −23.4384 −1.49743
\(246\) 9.56155 0.609622
\(247\) 22.2462 1.41549
\(248\) −4.00000 −0.254000
\(249\) 10.8078 0.684914
\(250\) 28.8617 1.82538
\(251\) −7.36932 −0.465147 −0.232574 0.972579i \(-0.574715\pi\)
−0.232574 + 0.972579i \(0.574715\pi\)
\(252\) −3.56155 −0.224357
\(253\) −17.8078 −1.11956
\(254\) 14.8078 0.929122
\(255\) 2.31534 0.144992
\(256\) 1.00000 0.0625000
\(257\) 13.3693 0.833955 0.416978 0.908917i \(-0.363089\pi\)
0.416978 + 0.908917i \(0.363089\pi\)
\(258\) −2.56155 −0.159475
\(259\) 13.1231 0.815430
\(260\) −22.9309 −1.42211
\(261\) −5.12311 −0.317112
\(262\) 5.68466 0.351199
\(263\) 28.0000 1.72655 0.863277 0.504730i \(-0.168408\pi\)
0.863277 + 0.504730i \(0.168408\pi\)
\(264\) 3.56155 0.219198
\(265\) −37.6155 −2.31070
\(266\) 14.2462 0.873491
\(267\) −15.6847 −0.959886
\(268\) −3.31534 −0.202517
\(269\) 22.0000 1.34136 0.670682 0.741745i \(-0.266002\pi\)
0.670682 + 0.741745i \(0.266002\pi\)
\(270\) −4.12311 −0.250924
\(271\) 16.1771 0.982688 0.491344 0.870966i \(-0.336506\pi\)
0.491344 + 0.870966i \(0.336506\pi\)
\(272\) 0.561553 0.0340491
\(273\) 19.8078 1.19882
\(274\) −18.0540 −1.09068
\(275\) 42.7386 2.57724
\(276\) 5.00000 0.300965
\(277\) 6.49242 0.390092 0.195046 0.980794i \(-0.437514\pi\)
0.195046 + 0.980794i \(0.437514\pi\)
\(278\) −13.4924 −0.809222
\(279\) 4.00000 0.239474
\(280\) −14.6847 −0.877576
\(281\) −2.87689 −0.171621 −0.0858106 0.996311i \(-0.527348\pi\)
−0.0858106 + 0.996311i \(0.527348\pi\)
\(282\) 7.12311 0.424175
\(283\) 27.6155 1.64157 0.820786 0.571235i \(-0.193536\pi\)
0.820786 + 0.571235i \(0.193536\pi\)
\(284\) 13.9309 0.826645
\(285\) 16.4924 0.976927
\(286\) −19.8078 −1.17126
\(287\) −34.0540 −2.01014
\(288\) −1.00000 −0.0589256
\(289\) −16.6847 −0.981450
\(290\) −21.1231 −1.24039
\(291\) 3.43845 0.201565
\(292\) 16.3693 0.957942
\(293\) −22.1771 −1.29560 −0.647799 0.761811i \(-0.724311\pi\)
−0.647799 + 0.761811i \(0.724311\pi\)
\(294\) 5.68466 0.331536
\(295\) 26.5464 1.54559
\(296\) 3.68466 0.214166
\(297\) −3.56155 −0.206662
\(298\) −8.43845 −0.488826
\(299\) −27.8078 −1.60816
\(300\) −12.0000 −0.692820
\(301\) 9.12311 0.525847
\(302\) 2.68466 0.154485
\(303\) −6.24621 −0.358835
\(304\) 4.00000 0.229416
\(305\) −4.12311 −0.236088
\(306\) −0.561553 −0.0321018
\(307\) 29.4924 1.68322 0.841611 0.540085i \(-0.181608\pi\)
0.841611 + 0.540085i \(0.181608\pi\)
\(308\) −12.6847 −0.722775
\(309\) −4.56155 −0.259498
\(310\) 16.4924 0.936707
\(311\) −11.8078 −0.669557 −0.334778 0.942297i \(-0.608661\pi\)
−0.334778 + 0.942297i \(0.608661\pi\)
\(312\) 5.56155 0.314861
\(313\) −13.6155 −0.769595 −0.384798 0.923001i \(-0.625729\pi\)
−0.384798 + 0.923001i \(0.625729\pi\)
\(314\) 7.75379 0.437572
\(315\) 14.6847 0.827387
\(316\) −12.9309 −0.727418
\(317\) −23.4384 −1.31643 −0.658217 0.752828i \(-0.728689\pi\)
−0.658217 + 0.752828i \(0.728689\pi\)
\(318\) 9.12311 0.511598
\(319\) −18.2462 −1.02159
\(320\) −4.12311 −0.230489
\(321\) −8.56155 −0.477859
\(322\) −17.8078 −0.992388
\(323\) 2.24621 0.124983
\(324\) 1.00000 0.0555556
\(325\) 66.7386 3.70199
\(326\) 1.75379 0.0971334
\(327\) −6.43845 −0.356047
\(328\) −9.56155 −0.527948
\(329\) −25.3693 −1.39866
\(330\) −14.6847 −0.808364
\(331\) −5.00000 −0.274825 −0.137412 0.990514i \(-0.543879\pi\)
−0.137412 + 0.990514i \(0.543879\pi\)
\(332\) −10.8078 −0.593153
\(333\) −3.68466 −0.201918
\(334\) −4.24621 −0.232342
\(335\) 13.6695 0.746845
\(336\) 3.56155 0.194299
\(337\) −29.6155 −1.61326 −0.806630 0.591056i \(-0.798711\pi\)
−0.806630 + 0.591056i \(0.798711\pi\)
\(338\) −17.9309 −0.975311
\(339\) −1.56155 −0.0848119
\(340\) −2.31534 −0.125567
\(341\) 14.2462 0.771476
\(342\) −4.00000 −0.216295
\(343\) 4.68466 0.252948
\(344\) 2.56155 0.138110
\(345\) −20.6155 −1.10990
\(346\) 3.75379 0.201805
\(347\) −29.3002 −1.57292 −0.786458 0.617643i \(-0.788087\pi\)
−0.786458 + 0.617643i \(0.788087\pi\)
\(348\) 5.12311 0.274627
\(349\) 21.0540 1.12699 0.563497 0.826118i \(-0.309456\pi\)
0.563497 + 0.826118i \(0.309456\pi\)
\(350\) 42.7386 2.28448
\(351\) −5.56155 −0.296854
\(352\) −3.56155 −0.189831
\(353\) 21.3153 1.13450 0.567251 0.823545i \(-0.308007\pi\)
0.567251 + 0.823545i \(0.308007\pi\)
\(354\) −6.43845 −0.342200
\(355\) −57.4384 −3.04852
\(356\) 15.6847 0.831285
\(357\) 2.00000 0.105851
\(358\) 15.6847 0.828960
\(359\) 2.56155 0.135194 0.0675968 0.997713i \(-0.478467\pi\)
0.0675968 + 0.997713i \(0.478467\pi\)
\(360\) 4.12311 0.217307
\(361\) −3.00000 −0.157895
\(362\) −22.8078 −1.19875
\(363\) −1.68466 −0.0884216
\(364\) −19.8078 −1.03821
\(365\) −67.4924 −3.53271
\(366\) 1.00000 0.0522708
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) −5.00000 −0.260643
\(369\) 9.56155 0.497755
\(370\) −15.1922 −0.789807
\(371\) −32.4924 −1.68692
\(372\) −4.00000 −0.207390
\(373\) 10.5616 0.546856 0.273428 0.961892i \(-0.411842\pi\)
0.273428 + 0.961892i \(0.411842\pi\)
\(374\) −2.00000 −0.103418
\(375\) 28.8617 1.49041
\(376\) −7.12311 −0.367346
\(377\) −28.4924 −1.46743
\(378\) −3.56155 −0.183187
\(379\) −2.24621 −0.115380 −0.0576901 0.998335i \(-0.518374\pi\)
−0.0576901 + 0.998335i \(0.518374\pi\)
\(380\) −16.4924 −0.846043
\(381\) 14.8078 0.758625
\(382\) −3.31534 −0.169628
\(383\) 2.43845 0.124599 0.0622994 0.998058i \(-0.480157\pi\)
0.0622994 + 0.998058i \(0.480157\pi\)
\(384\) 1.00000 0.0510310
\(385\) 52.3002 2.66546
\(386\) −12.8769 −0.655417
\(387\) −2.56155 −0.130211
\(388\) −3.43845 −0.174561
\(389\) −8.24621 −0.418100 −0.209050 0.977905i \(-0.567037\pi\)
−0.209050 + 0.977905i \(0.567037\pi\)
\(390\) −22.9309 −1.16115
\(391\) −2.80776 −0.141995
\(392\) −5.68466 −0.287119
\(393\) 5.68466 0.286753
\(394\) 6.19224 0.311960
\(395\) 53.3153 2.68259
\(396\) 3.56155 0.178975
\(397\) −10.1771 −0.510773 −0.255387 0.966839i \(-0.582203\pi\)
−0.255387 + 0.966839i \(0.582203\pi\)
\(398\) −7.43845 −0.372856
\(399\) 14.2462 0.713203
\(400\) 12.0000 0.600000
\(401\) 0.561553 0.0280426 0.0140213 0.999902i \(-0.495537\pi\)
0.0140213 + 0.999902i \(0.495537\pi\)
\(402\) −3.31534 −0.165354
\(403\) 22.2462 1.10816
\(404\) 6.24621 0.310761
\(405\) −4.12311 −0.204879
\(406\) −18.2462 −0.905544
\(407\) −13.1231 −0.650488
\(408\) 0.561553 0.0278010
\(409\) 8.00000 0.395575 0.197787 0.980245i \(-0.436624\pi\)
0.197787 + 0.980245i \(0.436624\pi\)
\(410\) 39.4233 1.94698
\(411\) −18.0540 −0.890537
\(412\) 4.56155 0.224732
\(413\) 22.9309 1.12835
\(414\) 5.00000 0.245737
\(415\) 44.5616 2.18744
\(416\) −5.56155 −0.272678
\(417\) −13.4924 −0.660727
\(418\) −14.2462 −0.696805
\(419\) −4.00000 −0.195413 −0.0977064 0.995215i \(-0.531151\pi\)
−0.0977064 + 0.995215i \(0.531151\pi\)
\(420\) −14.6847 −0.716538
\(421\) −2.31534 −0.112843 −0.0564214 0.998407i \(-0.517969\pi\)
−0.0564214 + 0.998407i \(0.517969\pi\)
\(422\) 24.4924 1.19227
\(423\) 7.12311 0.346337
\(424\) −9.12311 −0.443057
\(425\) 6.73863 0.326872
\(426\) 13.9309 0.674953
\(427\) −3.56155 −0.172356
\(428\) 8.56155 0.413838
\(429\) −19.8078 −0.956328
\(430\) −10.5616 −0.509323
\(431\) −12.7386 −0.613598 −0.306799 0.951774i \(-0.599258\pi\)
−0.306799 + 0.951774i \(0.599258\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 12.8769 0.618824 0.309412 0.950928i \(-0.399868\pi\)
0.309412 + 0.950928i \(0.399868\pi\)
\(434\) 14.2462 0.683840
\(435\) −21.1231 −1.01278
\(436\) 6.43845 0.308346
\(437\) −20.0000 −0.956730
\(438\) 16.3693 0.782156
\(439\) −22.5616 −1.07680 −0.538402 0.842688i \(-0.680972\pi\)
−0.538402 + 0.842688i \(0.680972\pi\)
\(440\) 14.6847 0.700064
\(441\) 5.68466 0.270698
\(442\) −3.12311 −0.148551
\(443\) 4.31534 0.205028 0.102514 0.994732i \(-0.467311\pi\)
0.102514 + 0.994732i \(0.467311\pi\)
\(444\) 3.68466 0.174866
\(445\) −64.6695 −3.06563
\(446\) −3.56155 −0.168644
\(447\) −8.43845 −0.399125
\(448\) −3.56155 −0.168268
\(449\) −23.5616 −1.11194 −0.555969 0.831203i \(-0.687653\pi\)
−0.555969 + 0.831203i \(0.687653\pi\)
\(450\) −12.0000 −0.565685
\(451\) 34.0540 1.60354
\(452\) 1.56155 0.0734493
\(453\) 2.68466 0.126136
\(454\) 11.5616 0.542611
\(455\) 81.6695 3.82873
\(456\) 4.00000 0.187317
\(457\) 33.1231 1.54943 0.774717 0.632308i \(-0.217892\pi\)
0.774717 + 0.632308i \(0.217892\pi\)
\(458\) 21.8078 1.01901
\(459\) −0.561553 −0.0262110
\(460\) 20.6155 0.961204
\(461\) 26.1771 1.21919 0.609594 0.792714i \(-0.291332\pi\)
0.609594 + 0.792714i \(0.291332\pi\)
\(462\) −12.6847 −0.590144
\(463\) 25.4384 1.18222 0.591112 0.806589i \(-0.298689\pi\)
0.591112 + 0.806589i \(0.298689\pi\)
\(464\) −5.12311 −0.237834
\(465\) 16.4924 0.764818
\(466\) −5.12311 −0.237323
\(467\) 39.4233 1.82429 0.912146 0.409865i \(-0.134424\pi\)
0.912146 + 0.409865i \(0.134424\pi\)
\(468\) 5.56155 0.257083
\(469\) 11.8078 0.545232
\(470\) 29.3693 1.35471
\(471\) 7.75379 0.357276
\(472\) 6.43845 0.296354
\(473\) −9.12311 −0.419481
\(474\) −12.9309 −0.593935
\(475\) 48.0000 2.20239
\(476\) −2.00000 −0.0916698
\(477\) 9.12311 0.417718
\(478\) −11.3693 −0.520020
\(479\) −7.36932 −0.336713 −0.168356 0.985726i \(-0.553846\pi\)
−0.168356 + 0.985726i \(0.553846\pi\)
\(480\) −4.12311 −0.188193
\(481\) −20.4924 −0.934374
\(482\) 19.4924 0.887856
\(483\) −17.8078 −0.810281
\(484\) 1.68466 0.0765754
\(485\) 14.1771 0.643748
\(486\) 1.00000 0.0453609
\(487\) 14.2462 0.645557 0.322779 0.946474i \(-0.395383\pi\)
0.322779 + 0.946474i \(0.395383\pi\)
\(488\) −1.00000 −0.0452679
\(489\) 1.75379 0.0793091
\(490\) 23.4384 1.05884
\(491\) 20.4924 0.924810 0.462405 0.886669i \(-0.346987\pi\)
0.462405 + 0.886669i \(0.346987\pi\)
\(492\) −9.56155 −0.431068
\(493\) −2.87689 −0.129569
\(494\) −22.2462 −1.00090
\(495\) −14.6847 −0.660026
\(496\) 4.00000 0.179605
\(497\) −49.6155 −2.22556
\(498\) −10.8078 −0.484307
\(499\) 16.3693 0.732791 0.366396 0.930459i \(-0.380592\pi\)
0.366396 + 0.930459i \(0.380592\pi\)
\(500\) −28.8617 −1.29074
\(501\) −4.24621 −0.189707
\(502\) 7.36932 0.328909
\(503\) 6.63068 0.295648 0.147824 0.989014i \(-0.452773\pi\)
0.147824 + 0.989014i \(0.452773\pi\)
\(504\) 3.56155 0.158644
\(505\) −25.7538 −1.14603
\(506\) 17.8078 0.791652
\(507\) −17.9309 −0.796338
\(508\) −14.8078 −0.656988
\(509\) 31.6155 1.40133 0.700667 0.713489i \(-0.252886\pi\)
0.700667 + 0.713489i \(0.252886\pi\)
\(510\) −2.31534 −0.102525
\(511\) −58.3002 −2.57905
\(512\) −1.00000 −0.0441942
\(513\) −4.00000 −0.176604
\(514\) −13.3693 −0.589695
\(515\) −18.8078 −0.828769
\(516\) 2.56155 0.112766
\(517\) 25.3693 1.11574
\(518\) −13.1231 −0.576596
\(519\) 3.75379 0.164773
\(520\) 22.9309 1.00559
\(521\) −18.4924 −0.810168 −0.405084 0.914280i \(-0.632758\pi\)
−0.405084 + 0.914280i \(0.632758\pi\)
\(522\) 5.12311 0.224232
\(523\) −44.2311 −1.93409 −0.967045 0.254607i \(-0.918054\pi\)
−0.967045 + 0.254607i \(0.918054\pi\)
\(524\) −5.68466 −0.248335
\(525\) 42.7386 1.86527
\(526\) −28.0000 −1.22086
\(527\) 2.24621 0.0978465
\(528\) −3.56155 −0.154997
\(529\) 2.00000 0.0869565
\(530\) 37.6155 1.63391
\(531\) −6.43845 −0.279405
\(532\) −14.2462 −0.617652
\(533\) 53.1771 2.30336
\(534\) 15.6847 0.678742
\(535\) −35.3002 −1.52616
\(536\) 3.31534 0.143201
\(537\) 15.6847 0.676843
\(538\) −22.0000 −0.948487
\(539\) 20.2462 0.872066
\(540\) 4.12311 0.177430
\(541\) 8.80776 0.378675 0.189338 0.981912i \(-0.439366\pi\)
0.189338 + 0.981912i \(0.439366\pi\)
\(542\) −16.1771 −0.694865
\(543\) −22.8078 −0.978775
\(544\) −0.561553 −0.0240764
\(545\) −26.5464 −1.13712
\(546\) −19.8078 −0.847694
\(547\) −4.68466 −0.200302 −0.100151 0.994972i \(-0.531933\pi\)
−0.100151 + 0.994972i \(0.531933\pi\)
\(548\) 18.0540 0.771228
\(549\) 1.00000 0.0426790
\(550\) −42.7386 −1.82238
\(551\) −20.4924 −0.873007
\(552\) −5.00000 −0.212814
\(553\) 46.0540 1.95841
\(554\) −6.49242 −0.275837
\(555\) −15.1922 −0.644875
\(556\) 13.4924 0.572206
\(557\) −45.6155 −1.93279 −0.966396 0.257058i \(-0.917247\pi\)
−0.966396 + 0.257058i \(0.917247\pi\)
\(558\) −4.00000 −0.169334
\(559\) −14.2462 −0.602551
\(560\) 14.6847 0.620540
\(561\) −2.00000 −0.0844401
\(562\) 2.87689 0.121354
\(563\) −17.3693 −0.732029 −0.366015 0.930609i \(-0.619278\pi\)
−0.366015 + 0.930609i \(0.619278\pi\)
\(564\) −7.12311 −0.299937
\(565\) −6.43845 −0.270868
\(566\) −27.6155 −1.16077
\(567\) −3.56155 −0.149571
\(568\) −13.9309 −0.584526
\(569\) 23.8078 0.998073 0.499037 0.866581i \(-0.333687\pi\)
0.499037 + 0.866581i \(0.333687\pi\)
\(570\) −16.4924 −0.690792
\(571\) 11.6155 0.486095 0.243047 0.970014i \(-0.421853\pi\)
0.243047 + 0.970014i \(0.421853\pi\)
\(572\) 19.8078 0.828204
\(573\) −3.31534 −0.138500
\(574\) 34.0540 1.42139
\(575\) −60.0000 −2.50217
\(576\) 1.00000 0.0416667
\(577\) −1.36932 −0.0570054 −0.0285027 0.999594i \(-0.509074\pi\)
−0.0285027 + 0.999594i \(0.509074\pi\)
\(578\) 16.6847 0.693990
\(579\) −12.8769 −0.535145
\(580\) 21.1231 0.877089
\(581\) 38.4924 1.59693
\(582\) −3.43845 −0.142528
\(583\) 32.4924 1.34570
\(584\) −16.3693 −0.677367
\(585\) −22.9309 −0.948075
\(586\) 22.1771 0.916127
\(587\) −39.8617 −1.64527 −0.822635 0.568570i \(-0.807497\pi\)
−0.822635 + 0.568570i \(0.807497\pi\)
\(588\) −5.68466 −0.234431
\(589\) 16.0000 0.659269
\(590\) −26.5464 −1.09290
\(591\) 6.19224 0.254715
\(592\) −3.68466 −0.151439
\(593\) −2.80776 −0.115301 −0.0576505 0.998337i \(-0.518361\pi\)
−0.0576505 + 0.998337i \(0.518361\pi\)
\(594\) 3.56155 0.146132
\(595\) 8.24621 0.338062
\(596\) 8.43845 0.345652
\(597\) −7.43845 −0.304435
\(598\) 27.8078 1.13714
\(599\) 19.2462 0.786379 0.393189 0.919457i \(-0.371372\pi\)
0.393189 + 0.919457i \(0.371372\pi\)
\(600\) 12.0000 0.489898
\(601\) 25.4924 1.03986 0.519929 0.854210i \(-0.325958\pi\)
0.519929 + 0.854210i \(0.325958\pi\)
\(602\) −9.12311 −0.371830
\(603\) −3.31534 −0.135011
\(604\) −2.68466 −0.109237
\(605\) −6.94602 −0.282396
\(606\) 6.24621 0.253735
\(607\) 9.43845 0.383095 0.191547 0.981483i \(-0.438649\pi\)
0.191547 + 0.981483i \(0.438649\pi\)
\(608\) −4.00000 −0.162221
\(609\) −18.2462 −0.739374
\(610\) 4.12311 0.166940
\(611\) 39.6155 1.60267
\(612\) 0.561553 0.0226994
\(613\) 13.8617 0.559870 0.279935 0.960019i \(-0.409687\pi\)
0.279935 + 0.960019i \(0.409687\pi\)
\(614\) −29.4924 −1.19022
\(615\) 39.4233 1.58970
\(616\) 12.6847 0.511079
\(617\) −25.6847 −1.03403 −0.517013 0.855978i \(-0.672956\pi\)
−0.517013 + 0.855978i \(0.672956\pi\)
\(618\) 4.56155 0.183493
\(619\) 22.4924 0.904047 0.452023 0.892006i \(-0.350702\pi\)
0.452023 + 0.892006i \(0.350702\pi\)
\(620\) −16.4924 −0.662352
\(621\) 5.00000 0.200643
\(622\) 11.8078 0.473448
\(623\) −55.8617 −2.23805
\(624\) −5.56155 −0.222640
\(625\) 59.0000 2.36000
\(626\) 13.6155 0.544186
\(627\) −14.2462 −0.568939
\(628\) −7.75379 −0.309410
\(629\) −2.06913 −0.0825016
\(630\) −14.6847 −0.585051
\(631\) −4.05398 −0.161386 −0.0806931 0.996739i \(-0.525713\pi\)
−0.0806931 + 0.996739i \(0.525713\pi\)
\(632\) 12.9309 0.514362
\(633\) 24.4924 0.973486
\(634\) 23.4384 0.930860
\(635\) 61.0540 2.42285
\(636\) −9.12311 −0.361755
\(637\) 31.6155 1.25265
\(638\) 18.2462 0.722374
\(639\) 13.9309 0.551097
\(640\) 4.12311 0.162980
\(641\) −33.4384 −1.32074 −0.660370 0.750941i \(-0.729600\pi\)
−0.660370 + 0.750941i \(0.729600\pi\)
\(642\) 8.56155 0.337898
\(643\) −2.06913 −0.0815985 −0.0407993 0.999167i \(-0.512990\pi\)
−0.0407993 + 0.999167i \(0.512990\pi\)
\(644\) 17.8078 0.701724
\(645\) −10.5616 −0.415861
\(646\) −2.24621 −0.0883760
\(647\) −10.1231 −0.397980 −0.198990 0.980001i \(-0.563766\pi\)
−0.198990 + 0.980001i \(0.563766\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −22.9309 −0.900115
\(650\) −66.7386 −2.61770
\(651\) 14.2462 0.558353
\(652\) −1.75379 −0.0686837
\(653\) −19.1231 −0.748345 −0.374172 0.927359i \(-0.622073\pi\)
−0.374172 + 0.927359i \(0.622073\pi\)
\(654\) 6.43845 0.251763
\(655\) 23.4384 0.915816
\(656\) 9.56155 0.373316
\(657\) 16.3693 0.638628
\(658\) 25.3693 0.988999
\(659\) −15.3002 −0.596011 −0.298005 0.954564i \(-0.596321\pi\)
−0.298005 + 0.954564i \(0.596321\pi\)
\(660\) 14.6847 0.571600
\(661\) −26.8769 −1.04539 −0.522695 0.852520i \(-0.675073\pi\)
−0.522695 + 0.852520i \(0.675073\pi\)
\(662\) 5.00000 0.194331
\(663\) −3.12311 −0.121291
\(664\) 10.8078 0.419423
\(665\) 58.7386 2.27779
\(666\) 3.68466 0.142778
\(667\) 25.6155 0.991837
\(668\) 4.24621 0.164291
\(669\) −3.56155 −0.137698
\(670\) −13.6695 −0.528099
\(671\) 3.56155 0.137492
\(672\) −3.56155 −0.137390
\(673\) −4.73863 −0.182661 −0.0913305 0.995821i \(-0.529112\pi\)
−0.0913305 + 0.995821i \(0.529112\pi\)
\(674\) 29.6155 1.14075
\(675\) −12.0000 −0.461880
\(676\) 17.9309 0.689649
\(677\) −41.8617 −1.60888 −0.804439 0.594036i \(-0.797534\pi\)
−0.804439 + 0.594036i \(0.797534\pi\)
\(678\) 1.56155 0.0599711
\(679\) 12.2462 0.469966
\(680\) 2.31534 0.0887893
\(681\) 11.5616 0.443040
\(682\) −14.2462 −0.545516
\(683\) 43.6847 1.67155 0.835774 0.549074i \(-0.185020\pi\)
0.835774 + 0.549074i \(0.185020\pi\)
\(684\) 4.00000 0.152944
\(685\) −74.4384 −2.84415
\(686\) −4.68466 −0.178861
\(687\) 21.8078 0.832018
\(688\) −2.56155 −0.0976583
\(689\) 50.7386 1.93299
\(690\) 20.6155 0.784820
\(691\) 8.63068 0.328327 0.164163 0.986433i \(-0.447508\pi\)
0.164163 + 0.986433i \(0.447508\pi\)
\(692\) −3.75379 −0.142698
\(693\) −12.6847 −0.481850
\(694\) 29.3002 1.11222
\(695\) −55.6307 −2.11019
\(696\) −5.12311 −0.194191
\(697\) 5.36932 0.203377
\(698\) −21.0540 −0.796905
\(699\) −5.12311 −0.193774
\(700\) −42.7386 −1.61537
\(701\) 22.9848 0.868126 0.434063 0.900883i \(-0.357080\pi\)
0.434063 + 0.900883i \(0.357080\pi\)
\(702\) 5.56155 0.209907
\(703\) −14.7386 −0.555878
\(704\) 3.56155 0.134231
\(705\) 29.3693 1.10611
\(706\) −21.3153 −0.802213
\(707\) −22.2462 −0.836655
\(708\) 6.43845 0.241972
\(709\) −15.9309 −0.598296 −0.299148 0.954207i \(-0.596702\pi\)
−0.299148 + 0.954207i \(0.596702\pi\)
\(710\) 57.4384 2.15563
\(711\) −12.9309 −0.484946
\(712\) −15.6847 −0.587807
\(713\) −20.0000 −0.749006
\(714\) −2.00000 −0.0748481
\(715\) −81.6695 −3.05427
\(716\) −15.6847 −0.586163
\(717\) −11.3693 −0.424595
\(718\) −2.56155 −0.0955963
\(719\) −8.49242 −0.316714 −0.158357 0.987382i \(-0.550620\pi\)
−0.158357 + 0.987382i \(0.550620\pi\)
\(720\) −4.12311 −0.153659
\(721\) −16.2462 −0.605041
\(722\) 3.00000 0.111648
\(723\) 19.4924 0.724931
\(724\) 22.8078 0.847644
\(725\) −61.4773 −2.28321
\(726\) 1.68466 0.0625235
\(727\) −52.1080 −1.93258 −0.966288 0.257462i \(-0.917114\pi\)
−0.966288 + 0.257462i \(0.917114\pi\)
\(728\) 19.8078 0.734125
\(729\) 1.00000 0.0370370
\(730\) 67.4924 2.49801
\(731\) −1.43845 −0.0532029
\(732\) −1.00000 −0.0369611
\(733\) −19.5616 −0.722522 −0.361261 0.932465i \(-0.617654\pi\)
−0.361261 + 0.932465i \(0.617654\pi\)
\(734\) 8.00000 0.295285
\(735\) 23.4384 0.864540
\(736\) 5.00000 0.184302
\(737\) −11.8078 −0.434945
\(738\) −9.56155 −0.351966
\(739\) −24.6155 −0.905497 −0.452748 0.891638i \(-0.649556\pi\)
−0.452748 + 0.891638i \(0.649556\pi\)
\(740\) 15.1922 0.558478
\(741\) −22.2462 −0.817235
\(742\) 32.4924 1.19283
\(743\) −17.6307 −0.646807 −0.323404 0.946261i \(-0.604827\pi\)
−0.323404 + 0.946261i \(0.604827\pi\)
\(744\) 4.00000 0.146647
\(745\) −34.7926 −1.27470
\(746\) −10.5616 −0.386686
\(747\) −10.8078 −0.395435
\(748\) 2.00000 0.0731272
\(749\) −30.4924 −1.11417
\(750\) −28.8617 −1.05388
\(751\) 11.0540 0.403365 0.201683 0.979451i \(-0.435359\pi\)
0.201683 + 0.979451i \(0.435359\pi\)
\(752\) 7.12311 0.259753
\(753\) 7.36932 0.268553
\(754\) 28.4924 1.03763
\(755\) 11.0691 0.402847
\(756\) 3.56155 0.129532
\(757\) 3.56155 0.129447 0.0647234 0.997903i \(-0.479383\pi\)
0.0647234 + 0.997903i \(0.479383\pi\)
\(758\) 2.24621 0.0815861
\(759\) 17.8078 0.646381
\(760\) 16.4924 0.598243
\(761\) 13.5076 0.489649 0.244825 0.969567i \(-0.421270\pi\)
0.244825 + 0.969567i \(0.421270\pi\)
\(762\) −14.8078 −0.536429
\(763\) −22.9309 −0.830153
\(764\) 3.31534 0.119945
\(765\) −2.31534 −0.0837114
\(766\) −2.43845 −0.0881047
\(767\) −35.8078 −1.29294
\(768\) −1.00000 −0.0360844
\(769\) −51.6155 −1.86130 −0.930652 0.365906i \(-0.880759\pi\)
−0.930652 + 0.365906i \(0.880759\pi\)
\(770\) −52.3002 −1.88477
\(771\) −13.3693 −0.481484
\(772\) 12.8769 0.463450
\(773\) −26.6695 −0.959235 −0.479618 0.877478i \(-0.659225\pi\)
−0.479618 + 0.877478i \(0.659225\pi\)
\(774\) 2.56155 0.0920731
\(775\) 48.0000 1.72421
\(776\) 3.43845 0.123433
\(777\) −13.1231 −0.470789
\(778\) 8.24621 0.295641
\(779\) 38.2462 1.37031
\(780\) 22.9309 0.821057
\(781\) 49.6155 1.77538
\(782\) 2.80776 0.100405
\(783\) 5.12311 0.183085
\(784\) 5.68466 0.203024
\(785\) 31.9697 1.14105
\(786\) −5.68466 −0.202765
\(787\) 54.7386 1.95122 0.975611 0.219508i \(-0.0704451\pi\)
0.975611 + 0.219508i \(0.0704451\pi\)
\(788\) −6.19224 −0.220589
\(789\) −28.0000 −0.996826
\(790\) −53.3153 −1.89687
\(791\) −5.56155 −0.197746
\(792\) −3.56155 −0.126554
\(793\) 5.56155 0.197497
\(794\) 10.1771 0.361171
\(795\) 37.6155 1.33409
\(796\) 7.43845 0.263649
\(797\) 24.5464 0.869478 0.434739 0.900556i \(-0.356841\pi\)
0.434739 + 0.900556i \(0.356841\pi\)
\(798\) −14.2462 −0.504310
\(799\) 4.00000 0.141510
\(800\) −12.0000 −0.424264
\(801\) 15.6847 0.554190
\(802\) −0.561553 −0.0198291
\(803\) 58.3002 2.05737
\(804\) 3.31534 0.116923
\(805\) −73.4233 −2.58783
\(806\) −22.2462 −0.783589
\(807\) −22.0000 −0.774437
\(808\) −6.24621 −0.219741
\(809\) −44.0540 −1.54886 −0.774428 0.632662i \(-0.781962\pi\)
−0.774428 + 0.632662i \(0.781962\pi\)
\(810\) 4.12311 0.144871
\(811\) 7.49242 0.263095 0.131547 0.991310i \(-0.458005\pi\)
0.131547 + 0.991310i \(0.458005\pi\)
\(812\) 18.2462 0.640316
\(813\) −16.1771 −0.567355
\(814\) 13.1231 0.459965
\(815\) 7.23106 0.253293
\(816\) −0.561553 −0.0196583
\(817\) −10.2462 −0.358470
\(818\) −8.00000 −0.279713
\(819\) −19.8078 −0.692139
\(820\) −39.4233 −1.37672
\(821\) −20.2462 −0.706598 −0.353299 0.935511i \(-0.614940\pi\)
−0.353299 + 0.935511i \(0.614940\pi\)
\(822\) 18.0540 0.629705
\(823\) 15.3693 0.535741 0.267870 0.963455i \(-0.413680\pi\)
0.267870 + 0.963455i \(0.413680\pi\)
\(824\) −4.56155 −0.158909
\(825\) −42.7386 −1.48797
\(826\) −22.9309 −0.797867
\(827\) 15.0540 0.523478 0.261739 0.965139i \(-0.415704\pi\)
0.261739 + 0.965139i \(0.415704\pi\)
\(828\) −5.00000 −0.173762
\(829\) −10.1922 −0.353991 −0.176995 0.984212i \(-0.556638\pi\)
−0.176995 + 0.984212i \(0.556638\pi\)
\(830\) −44.5616 −1.54675
\(831\) −6.49242 −0.225220
\(832\) 5.56155 0.192812
\(833\) 3.19224 0.110604
\(834\) 13.4924 0.467204
\(835\) −17.5076 −0.605875
\(836\) 14.2462 0.492716
\(837\) −4.00000 −0.138260
\(838\) 4.00000 0.138178
\(839\) −3.50758 −0.121095 −0.0605475 0.998165i \(-0.519285\pi\)
−0.0605475 + 0.998165i \(0.519285\pi\)
\(840\) 14.6847 0.506669
\(841\) −2.75379 −0.0949582
\(842\) 2.31534 0.0797919
\(843\) 2.87689 0.0990855
\(844\) −24.4924 −0.843064
\(845\) −73.9309 −2.54330
\(846\) −7.12311 −0.244897
\(847\) −6.00000 −0.206162
\(848\) 9.12311 0.313289
\(849\) −27.6155 −0.947762
\(850\) −6.73863 −0.231133
\(851\) 18.4233 0.631542
\(852\) −13.9309 −0.477264
\(853\) −11.5616 −0.395860 −0.197930 0.980216i \(-0.563422\pi\)
−0.197930 + 0.980216i \(0.563422\pi\)
\(854\) 3.56155 0.121874
\(855\) −16.4924 −0.564029
\(856\) −8.56155 −0.292628
\(857\) 36.4384 1.24471 0.622357 0.782734i \(-0.286175\pi\)
0.622357 + 0.782734i \(0.286175\pi\)
\(858\) 19.8078 0.676226
\(859\) −54.3542 −1.85454 −0.927270 0.374393i \(-0.877851\pi\)
−0.927270 + 0.374393i \(0.877851\pi\)
\(860\) 10.5616 0.360146
\(861\) 34.0540 1.16056
\(862\) 12.7386 0.433880
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 1.00000 0.0340207
\(865\) 15.4773 0.526243
\(866\) −12.8769 −0.437575
\(867\) 16.6847 0.566641
\(868\) −14.2462 −0.483548
\(869\) −46.0540 −1.56227
\(870\) 21.1231 0.716140
\(871\) −18.4384 −0.624763
\(872\) −6.43845 −0.218033
\(873\) −3.43845 −0.116374
\(874\) 20.0000 0.676510
\(875\) 102.793 3.47502
\(876\) −16.3693 −0.553068
\(877\) 55.5464 1.87567 0.937834 0.347083i \(-0.112828\pi\)
0.937834 + 0.347083i \(0.112828\pi\)
\(878\) 22.5616 0.761416
\(879\) 22.1771 0.748014
\(880\) −14.6847 −0.495020
\(881\) −13.4233 −0.452242 −0.226121 0.974099i \(-0.572605\pi\)
−0.226121 + 0.974099i \(0.572605\pi\)
\(882\) −5.68466 −0.191412
\(883\) 42.4773 1.42947 0.714737 0.699393i \(-0.246546\pi\)
0.714737 + 0.699393i \(0.246546\pi\)
\(884\) 3.12311 0.105041
\(885\) −26.5464 −0.892347
\(886\) −4.31534 −0.144977
\(887\) 6.56155 0.220315 0.110158 0.993914i \(-0.464864\pi\)
0.110158 + 0.993914i \(0.464864\pi\)
\(888\) −3.68466 −0.123649
\(889\) 52.7386 1.76880
\(890\) 64.6695 2.16773
\(891\) 3.56155 0.119317
\(892\) 3.56155 0.119250
\(893\) 28.4924 0.953463
\(894\) 8.43845 0.282224
\(895\) 64.6695 2.16166
\(896\) 3.56155 0.118983
\(897\) 27.8078 0.928474
\(898\) 23.5616 0.786259
\(899\) −20.4924 −0.683461
\(900\) 12.0000 0.400000
\(901\) 5.12311 0.170675
\(902\) −34.0540 −1.13387
\(903\) −9.12311 −0.303598
\(904\) −1.56155 −0.0519365
\(905\) −94.0388 −3.12596
\(906\) −2.68466 −0.0891918
\(907\) −46.4233 −1.54146 −0.770730 0.637162i \(-0.780108\pi\)
−0.770730 + 0.637162i \(0.780108\pi\)
\(908\) −11.5616 −0.383684
\(909\) 6.24621 0.207174
\(910\) −81.6695 −2.70732
\(911\) 34.7386 1.15094 0.575471 0.817822i \(-0.304819\pi\)
0.575471 + 0.817822i \(0.304819\pi\)
\(912\) −4.00000 −0.132453
\(913\) −38.4924 −1.27391
\(914\) −33.1231 −1.09561
\(915\) 4.12311 0.136306
\(916\) −21.8078 −0.720549
\(917\) 20.2462 0.668589
\(918\) 0.561553 0.0185340
\(919\) −16.9460 −0.558998 −0.279499 0.960146i \(-0.590168\pi\)
−0.279499 + 0.960146i \(0.590168\pi\)
\(920\) −20.6155 −0.679674
\(921\) −29.4924 −0.971808
\(922\) −26.1771 −0.862096
\(923\) 77.4773 2.55020
\(924\) 12.6847 0.417295
\(925\) −44.2159 −1.45381
\(926\) −25.4384 −0.835959
\(927\) 4.56155 0.149821
\(928\) 5.12311 0.168174
\(929\) 40.3002 1.32221 0.661103 0.750295i \(-0.270089\pi\)
0.661103 + 0.750295i \(0.270089\pi\)
\(930\) −16.4924 −0.540808
\(931\) 22.7386 0.745229
\(932\) 5.12311 0.167813
\(933\) 11.8078 0.386569
\(934\) −39.4233 −1.28997
\(935\) −8.24621 −0.269680
\(936\) −5.56155 −0.181785
\(937\) 35.4924 1.15949 0.579743 0.814799i \(-0.303153\pi\)
0.579743 + 0.814799i \(0.303153\pi\)
\(938\) −11.8078 −0.385537
\(939\) 13.6155 0.444326
\(940\) −29.3693 −0.957921
\(941\) −8.00000 −0.260793 −0.130396 0.991462i \(-0.541625\pi\)
−0.130396 + 0.991462i \(0.541625\pi\)
\(942\) −7.75379 −0.252632
\(943\) −47.8078 −1.55683
\(944\) −6.43845 −0.209554
\(945\) −14.6847 −0.477692
\(946\) 9.12311 0.296618
\(947\) 19.4233 0.631172 0.315586 0.948897i \(-0.397799\pi\)
0.315586 + 0.948897i \(0.397799\pi\)
\(948\) 12.9309 0.419975
\(949\) 91.0388 2.95525
\(950\) −48.0000 −1.55733
\(951\) 23.4384 0.760044
\(952\) 2.00000 0.0648204
\(953\) 28.5616 0.925199 0.462600 0.886567i \(-0.346917\pi\)
0.462600 + 0.886567i \(0.346917\pi\)
\(954\) −9.12311 −0.295371
\(955\) −13.6695 −0.442335
\(956\) 11.3693 0.367710
\(957\) 18.2462 0.589816
\(958\) 7.36932 0.238092
\(959\) −64.3002 −2.07636
\(960\) 4.12311 0.133073
\(961\) −15.0000 −0.483871
\(962\) 20.4924 0.660702
\(963\) 8.56155 0.275892
\(964\) −19.4924 −0.627809
\(965\) −53.0928 −1.70912
\(966\) 17.8078 0.572955
\(967\) 50.1771 1.61359 0.806793 0.590834i \(-0.201201\pi\)
0.806793 + 0.590834i \(0.201201\pi\)
\(968\) −1.68466 −0.0541470
\(969\) −2.24621 −0.0721587
\(970\) −14.1771 −0.455199
\(971\) −20.4233 −0.655415 −0.327707 0.944779i \(-0.606276\pi\)
−0.327707 + 0.944779i \(0.606276\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −48.0540 −1.54054
\(974\) −14.2462 −0.456478
\(975\) −66.7386 −2.13735
\(976\) 1.00000 0.0320092
\(977\) 1.36932 0.0438083 0.0219042 0.999760i \(-0.493027\pi\)
0.0219042 + 0.999760i \(0.493027\pi\)
\(978\) −1.75379 −0.0560800
\(979\) 55.8617 1.78535
\(980\) −23.4384 −0.748714
\(981\) 6.43845 0.205564
\(982\) −20.4924 −0.653939
\(983\) −31.2311 −0.996116 −0.498058 0.867144i \(-0.665953\pi\)
−0.498058 + 0.867144i \(0.665953\pi\)
\(984\) 9.56155 0.304811
\(985\) 25.5312 0.813493
\(986\) 2.87689 0.0916190
\(987\) 25.3693 0.807514
\(988\) 22.2462 0.707746
\(989\) 12.8078 0.407263
\(990\) 14.6847 0.466709
\(991\) 13.7538 0.436903 0.218452 0.975848i \(-0.429899\pi\)
0.218452 + 0.975848i \(0.429899\pi\)
\(992\) −4.00000 −0.127000
\(993\) 5.00000 0.158670
\(994\) 49.6155 1.57371
\(995\) −30.6695 −0.972289
\(996\) 10.8078 0.342457
\(997\) 39.9309 1.26462 0.632312 0.774714i \(-0.282106\pi\)
0.632312 + 0.774714i \(0.282106\pi\)
\(998\) −16.3693 −0.518162
\(999\) 3.68466 0.116577
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 366.2.a.h.1.1 2
3.2 odd 2 1098.2.a.m.1.2 2
4.3 odd 2 2928.2.a.u.1.1 2
5.4 even 2 9150.2.a.bh.1.2 2
12.11 even 2 8784.2.a.bg.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
366.2.a.h.1.1 2 1.1 even 1 trivial
1098.2.a.m.1.2 2 3.2 odd 2
2928.2.a.u.1.1 2 4.3 odd 2
8784.2.a.bg.1.2 2 12.11 even 2
9150.2.a.bh.1.2 2 5.4 even 2