L(s) = 1 | + 8.57·3-s − 8.24·5-s + 26.8·7-s + 46.5·9-s + 11·11-s − 72.1·13-s − 70.7·15-s + 116.·17-s − 70.6·19-s + 230.·21-s + 21.2·23-s − 57.0·25-s + 167.·27-s + 38.4·29-s − 263.·31-s + 94.3·33-s − 221.·35-s − 156.·37-s − 618.·39-s − 112.·41-s + 59.7·43-s − 383.·45-s − 134.·47-s + 376.·49-s + 1.00e3·51-s − 585.·53-s − 90.6·55-s + ⋯ |
L(s) = 1 | + 1.65·3-s − 0.737·5-s + 1.44·7-s + 1.72·9-s + 0.301·11-s − 1.53·13-s − 1.21·15-s + 1.66·17-s − 0.852·19-s + 2.39·21-s + 0.192·23-s − 0.456·25-s + 1.19·27-s + 0.246·29-s − 1.52·31-s + 0.497·33-s − 1.06·35-s − 0.694·37-s − 2.53·39-s − 0.426·41-s + 0.211·43-s − 1.27·45-s − 0.417·47-s + 1.09·49-s + 2.74·51-s − 1.51·53-s − 0.222·55-s + ⋯ |
Λ(s)=(=(88s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(88s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.453770397 |
L(21) |
≈ |
2.453770397 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1−11T |
good | 3 | 1−8.57T+27T2 |
| 5 | 1+8.24T+125T2 |
| 7 | 1−26.8T+343T2 |
| 13 | 1+72.1T+2.19e3T2 |
| 17 | 1−116.T+4.91e3T2 |
| 19 | 1+70.6T+6.85e3T2 |
| 23 | 1−21.2T+1.21e4T2 |
| 29 | 1−38.4T+2.43e4T2 |
| 31 | 1+263.T+2.97e4T2 |
| 37 | 1+156.T+5.06e4T2 |
| 41 | 1+112.T+6.89e4T2 |
| 43 | 1−59.7T+7.95e4T2 |
| 47 | 1+134.T+1.03e5T2 |
| 53 | 1+585.T+1.48e5T2 |
| 59 | 1−573.T+2.05e5T2 |
| 61 | 1−347.T+2.26e5T2 |
| 67 | 1+1.05e3T+3.00e5T2 |
| 71 | 1+292.T+3.57e5T2 |
| 73 | 1−230.T+3.89e5T2 |
| 79 | 1−1.16e3T+4.93e5T2 |
| 83 | 1−763.T+5.71e5T2 |
| 89 | 1−1.02e3T+7.04e5T2 |
| 97 | 1−832.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.15112838371468489555260026407, −12.64555432174283018800162517979, −11.67000859361383516785327882692, −10.19190512681691691654648637078, −8.982482989224976186176405820413, −7.910315789992655858607359498043, −7.47839850254553866370060509211, −4.88537701709424161140493738813, −3.56759448675284572070662362310, −1.95346657413988652683036824863,
1.95346657413988652683036824863, 3.56759448675284572070662362310, 4.88537701709424161140493738813, 7.47839850254553866370060509211, 7.910315789992655858607359498043, 8.982482989224976186176405820413, 10.19190512681691691654648637078, 11.67000859361383516785327882692, 12.64555432174283018800162517979, 14.15112838371468489555260026407