Properties

Label 88.4.a.d
Level $88$
Weight $4$
Character orbit 88.a
Self dual yes
Analytic conductor $5.192$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [88,4,Mod(1,88)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(88, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("88.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 88.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.19216808051\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.11109.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 15x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{3} + (\beta_{2} + 3) q^{5} + ( - \beta_{2} - \beta_1 + 8) q^{7} + ( - 3 \beta_{2} + 2 \beta_1 + 28) q^{9} + 11 q^{11} + (5 \beta_{2} + 5 \beta_1 + 22) q^{13} + (4 \beta_{2} + 3 \beta_1 - 3) q^{15}+ \cdots + ( - 33 \beta_{2} + 22 \beta_1 + 308) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{3} + 8 q^{5} + 24 q^{7} + 89 q^{9} + 33 q^{11} + 66 q^{13} - 10 q^{15} + 210 q^{17} - 72 q^{19} + 200 q^{21} - 50 q^{23} - q^{25} - 286 q^{27} - 50 q^{29} - 298 q^{31} + 22 q^{33} - 304 q^{35}+ \cdots + 979 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 15x - 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 3\nu - 9 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 11 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{2} + \beta _1 + 42 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.15339
4.56976
−0.416370
0 −9.40408 0 −1.20950 0 1.80542 0 61.4367 0
1.2 0 2.82655 0 17.4525 0 −4.62596 0 −19.0106 0
1.3 0 8.57753 0 −8.24301 0 26.8205 0 46.5740 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 88.4.a.d 3
3.b odd 2 1 792.4.a.l 3
4.b odd 2 1 176.4.a.j 3
5.b even 2 1 2200.4.a.m 3
8.b even 2 1 704.4.a.t 3
8.d odd 2 1 704.4.a.u 3
11.b odd 2 1 968.4.a.i 3
12.b even 2 1 1584.4.a.bl 3
44.c even 2 1 1936.4.a.bh 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.4.a.d 3 1.a even 1 1 trivial
176.4.a.j 3 4.b odd 2 1
704.4.a.t 3 8.b even 2 1
704.4.a.u 3 8.d odd 2 1
792.4.a.l 3 3.b odd 2 1
968.4.a.i 3 11.b odd 2 1
1584.4.a.bl 3 12.b even 2 1
1936.4.a.bh 3 44.c even 2 1
2200.4.a.m 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 2T_{3}^{2} - 83T_{3} + 228 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(88))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 2 T^{2} + \cdots + 228 \) Copy content Toggle raw display
$5$ \( T^{3} - 8 T^{2} + \cdots - 174 \) Copy content Toggle raw display
$7$ \( T^{3} - 24 T^{2} + \cdots + 224 \) Copy content Toggle raw display
$11$ \( (T - 11)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 66 T^{2} + \cdots + 325152 \) Copy content Toggle raw display
$17$ \( T^{3} - 210 T^{2} + \cdots + 70632 \) Copy content Toggle raw display
$19$ \( T^{3} + 72 T^{2} + \cdots - 196672 \) Copy content Toggle raw display
$23$ \( T^{3} + 50 T^{2} + \cdots + 440328 \) Copy content Toggle raw display
$29$ \( T^{3} + 50 T^{2} + \cdots + 1236864 \) Copy content Toggle raw display
$31$ \( T^{3} + 298 T^{2} + \cdots - 14254992 \) Copy content Toggle raw display
$37$ \( T^{3} + 4 T^{2} + \cdots - 11318238 \) Copy content Toggle raw display
$41$ \( T^{3} - 254 T^{2} + \cdots - 971296 \) Copy content Toggle raw display
$43$ \( T^{3} + 112 T^{2} + \cdots - 381456 \) Copy content Toggle raw display
$47$ \( T^{3} - 40 T^{2} + \cdots - 16705536 \) Copy content Toggle raw display
$53$ \( T^{3} + 550 T^{2} + \cdots + 136296 \) Copy content Toggle raw display
$59$ \( T^{3} - 1630 T^{2} + \cdots - 159954212 \) Copy content Toggle raw display
$61$ \( T^{3} + 906 T^{2} + \cdots - 135114784 \) Copy content Toggle raw display
$67$ \( T^{3} + 482 T^{2} + \cdots + 82948068 \) Copy content Toggle raw display
$71$ \( T^{3} - 242 T^{2} + \cdots - 72210312 \) Copy content Toggle raw display
$73$ \( T^{3} - 998 T^{2} + \cdots - 29947936 \) Copy content Toggle raw display
$79$ \( T^{3} - 324 T^{2} + \cdots + 77763136 \) Copy content Toggle raw display
$83$ \( T^{3} - 1360 T^{2} + \cdots + 367318992 \) Copy content Toggle raw display
$89$ \( T^{3} - 1200 T^{2} + \cdots - 7674426 \) Copy content Toggle raw display
$97$ \( T^{3} - 180 T^{2} + \cdots + 97506814 \) Copy content Toggle raw display
show more
show less