L(s) = 1 | + 5.16·3-s + 9·5-s − 109.·7-s − 216.·9-s + 121·11-s − 390.·13-s + 46.4·15-s + 422.·17-s − 2.24e3·19-s − 567.·21-s − 217.·23-s − 3.04e3·25-s − 2.37e3·27-s − 4.43e3·29-s + 4.80e3·31-s + 625.·33-s − 988.·35-s − 1.27e4·37-s − 2.01e3·39-s − 7.01e3·41-s + 7.70e3·43-s − 1.94e3·45-s + 1.57e4·47-s − 4.74e3·49-s + 2.18e3·51-s + 1.22e4·53-s + 1.08e3·55-s + ⋯ |
L(s) = 1 | + 0.331·3-s + 0.160·5-s − 0.847·7-s − 0.890·9-s + 0.301·11-s − 0.640·13-s + 0.0533·15-s + 0.354·17-s − 1.42·19-s − 0.280·21-s − 0.0856·23-s − 0.974·25-s − 0.626·27-s − 0.979·29-s + 0.898·31-s + 0.0999·33-s − 0.136·35-s − 1.53·37-s − 0.212·39-s − 0.651·41-s + 0.635·43-s − 0.143·45-s + 1.04·47-s − 0.282·49-s + 0.117·51-s + 0.599·53-s + 0.0485·55-s + ⋯ |
Λ(s)=(=(88s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(88s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1−121T |
good | 3 | 1−5.16T+243T2 |
| 5 | 1−9T+3.12e3T2 |
| 7 | 1+109.T+1.68e4T2 |
| 13 | 1+390.T+3.71e5T2 |
| 17 | 1−422.T+1.41e6T2 |
| 19 | 1+2.24e3T+2.47e6T2 |
| 23 | 1+217.T+6.43e6T2 |
| 29 | 1+4.43e3T+2.05e7T2 |
| 31 | 1−4.80e3T+2.86e7T2 |
| 37 | 1+1.27e4T+6.93e7T2 |
| 41 | 1+7.01e3T+1.15e8T2 |
| 43 | 1−7.70e3T+1.47e8T2 |
| 47 | 1−1.57e4T+2.29e8T2 |
| 53 | 1−1.22e4T+4.18e8T2 |
| 59 | 1−2.06e4T+7.14e8T2 |
| 61 | 1−2.80e4T+8.44e8T2 |
| 67 | 1−5.37e4T+1.35e9T2 |
| 71 | 1−2.14e4T+1.80e9T2 |
| 73 | 1+2.54e4T+2.07e9T2 |
| 79 | 1−2.84e4T+3.07e9T2 |
| 83 | 1+6.73e4T+3.93e9T2 |
| 89 | 1+3.21e4T+5.58e9T2 |
| 97 | 1−1.97e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.71104090296938544698474588718, −11.68072538132719985891178053807, −10.32919446343358559879481518266, −9.308447901155435725996407038845, −8.243418962414621589370502451663, −6.78275221532505462244127429013, −5.59424691102420022147614481185, −3.77571289706663469526055859700, −2.34191600041547411065664860379, 0,
2.34191600041547411065664860379, 3.77571289706663469526055859700, 5.59424691102420022147614481185, 6.78275221532505462244127429013, 8.243418962414621589370502451663, 9.308447901155435725996407038845, 10.32919446343358559879481518266, 11.68072538132719985891178053807, 12.71104090296938544698474588718