Properties

Label 88.6.a.a
Level 8888
Weight 66
Character orbit 88.a
Self dual yes
Analytic conductor 14.11414.114
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [88,6,Mod(1,88)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(88, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("88.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 88=2311 88 = 2^{3} \cdot 11
Weight: k k == 6 6
Character orbit: [χ][\chi] == 88.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 14.113776143514.1137761435
Analytic rank: 11
Dimension: 22
Coefficient field: Q(37)\Q(\sqrt{37})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x9 x^{2} - x - 9 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=237\beta = 2\sqrt{37}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β7)q3+9q5+(11β+24)q7+(14β46)q9+121q11+(3β354)q13+(9β63)q15+(109β904)q17+(119β798)q19++(1694β5566)q99+O(q100) q + ( - \beta - 7) q^{3} + 9 q^{5} + (11 \beta + 24) q^{7} + (14 \beta - 46) q^{9} + 121 q^{11} + (3 \beta - 354) q^{13} + ( - 9 \beta - 63) q^{15} + ( - 109 \beta - 904) q^{17} + (119 \beta - 798) q^{19}+ \cdots + (1694 \beta - 5566) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q14q3+18q5+48q792q9+242q11708q13126q151808q171596q193592q212454q236088q2598q275320q292230q311694q33+11132q99+O(q100) 2 q - 14 q^{3} + 18 q^{5} + 48 q^{7} - 92 q^{9} + 242 q^{11} - 708 q^{13} - 126 q^{15} - 1808 q^{17} - 1596 q^{19} - 3592 q^{21} - 2454 q^{23} - 6088 q^{25} - 98 q^{27} - 5320 q^{29} - 2230 q^{31} - 1694 q^{33}+ \cdots - 11132 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
3.54138
−2.54138
0 −19.1655 0 9.00000 0 157.821 0 124.317 0
1.2 0 5.16553 0 9.00000 0 −109.821 0 −216.317 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 88.6.a.a 2
3.b odd 2 1 792.6.a.b 2
4.b odd 2 1 176.6.a.h 2
8.b even 2 1 704.6.a.o 2
8.d odd 2 1 704.6.a.l 2
11.b odd 2 1 968.6.a.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.6.a.a 2 1.a even 1 1 trivial
176.6.a.h 2 4.b odd 2 1
704.6.a.l 2 8.d odd 2 1
704.6.a.o 2 8.b even 2 1
792.6.a.b 2 3.b odd 2 1
968.6.a.b 2 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T32+14T399 T_{3}^{2} + 14T_{3} - 99 acting on S6new(Γ0(88))S_{6}^{\mathrm{new}}(\Gamma_0(88)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+14T99 T^{2} + 14T - 99 Copy content Toggle raw display
55 (T9)2 (T - 9)^{2} Copy content Toggle raw display
77 T248T17332 T^{2} - 48T - 17332 Copy content Toggle raw display
1111 (T121)2 (T - 121)^{2} Copy content Toggle raw display
1313 T2+708T+123984 T^{2} + 708T + 123984 Copy content Toggle raw display
1717 T2+1808T941172 T^{2} + 1808 T - 941172 Copy content Toggle raw display
1919 T2+1596T1459024 T^{2} + 1596 T - 1459024 Copy content Toggle raw display
2323 T2+2454T+485957 T^{2} + 2454 T + 485957 Copy content Toggle raw display
2929 T2+5320T+3920832 T^{2} + 5320 T + 3920832 Copy content Toggle raw display
3131 T2+2230T33857787 T^{2} + 2230 T - 33857787 Copy content Toggle raw display
3737 T2+10026T35490631 T^{2} + 10026 T - 35490631 Copy content Toggle raw display
4141 T2+7820T+5664400 T^{2} + 7820 T + 5664400 Copy content Toggle raw display
4343 T211812T+31639044 T^{2} - 11812 T + 31639044 Copy content Toggle raw display
4747 T2344T243211968 T^{2} - 344 T - 243211968 Copy content Toggle raw display
5353 T2+16228T348899852 T^{2} + 16228 T - 348899852 Copy content Toggle raw display
5959 T218878T36444947 T^{2} - 18878 T - 36444947 Copy content Toggle raw display
6161 T212672T431944912 T^{2} - 12672 T - 431944912 Copy content Toggle raw display
6767 T250470T177050475 T^{2} - 50470 T - 177050475 Copy content Toggle raw display
7171 T266326T+963103461 T^{2} - 66326 T + 963103461 Copy content Toggle raw display
7373 T2+1013334576 T^{2} + \cdots - 1013334576 Copy content Toggle raw display
7979 T217260T319709852 T^{2} - 17260 T - 319709852 Copy content Toggle raw display
8383 T2+6328465100 T^{2} + \cdots - 6328465100 Copy content Toggle raw display
8989 T2++1274084649 T^{2} + \cdots + 1274084649 Copy content Toggle raw display
9797 T2+2434531183 T^{2} + \cdots - 2434531183 Copy content Toggle raw display
show more
show less