Properties

Label 88.6
Level 88
Weight 6
Dimension 645
Nonzero newspaces 6
Newform subspaces 12
Sturm bound 2880
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 12 \)
Sturm bound: \(2880\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(88))\).

Total New Old
Modular forms 1260 681 579
Cusp forms 1140 645 495
Eisenstein series 120 36 84

Trace form

\( 645 q - 6 q^{2} - 50 q^{3} - 50 q^{4} + 148 q^{5} + 222 q^{6} - 154 q^{7} + 486 q^{8} - 6 q^{9} - 1274 q^{10} - 134 q^{11} - 3172 q^{12} - 956 q^{13} + 4758 q^{14} + 4772 q^{15} + 6614 q^{16} + 4686 q^{17}+ \cdots - 747628 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(88))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
88.6.a \(\chi_{88}(1, \cdot)\) 88.6.a.a 2 1
88.6.a.b 3
88.6.a.c 4
88.6.a.d 4
88.6.c \(\chi_{88}(45, \cdot)\) 88.6.c.a 50 1
88.6.e \(\chi_{88}(87, \cdot)\) None 0 1
88.6.g \(\chi_{88}(43, \cdot)\) 88.6.g.a 2 1
88.6.g.b 56
88.6.i \(\chi_{88}(9, \cdot)\) 88.6.i.a 28 4
88.6.i.b 32
88.6.k \(\chi_{88}(19, \cdot)\) 88.6.k.a 8 4
88.6.k.b 224
88.6.m \(\chi_{88}(7, \cdot)\) None 0 4
88.6.o \(\chi_{88}(5, \cdot)\) 88.6.o.a 232 4

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(88))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(88)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 1}\)