Defining parameters
Level: | \( N \) | = | \( 88 = 2^{3} \cdot 11 \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 6 \) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(2880\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(88))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1260 | 681 | 579 |
Cusp forms | 1140 | 645 | 495 |
Eisenstein series | 120 | 36 | 84 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(88))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(88))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(88)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 1}\)