Properties

Label 88.6
Level 88
Weight 6
Dimension 645
Nonzero newspaces 6
Newform subspaces 12
Sturm bound 2880
Trace bound 2

Downloads

Learn more

Defining parameters

Level: N N = 88=2311 88 = 2^{3} \cdot 11
Weight: k k = 6 6
Nonzero newspaces: 6 6
Newform subspaces: 12 12
Sturm bound: 28802880
Trace bound: 22

Dimensions

The following table gives the dimensions of various subspaces of M6(Γ1(88))M_{6}(\Gamma_1(88)).

Total New Old
Modular forms 1260 681 579
Cusp forms 1140 645 495
Eisenstein series 120 36 84

Trace form

645q6q250q350q4+148q5+222q6154q7+486q86q91274q10134q113172q12956q13+4758q14+4772q15+6614q16+4686q17+747628q99+O(q100) 645 q - 6 q^{2} - 50 q^{3} - 50 q^{4} + 148 q^{5} + 222 q^{6} - 154 q^{7} + 486 q^{8} - 6 q^{9} - 1274 q^{10} - 134 q^{11} - 3172 q^{12} - 956 q^{13} + 4758 q^{14} + 4772 q^{15} + 6614 q^{16} + 4686 q^{17}+ \cdots - 747628 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(Γ1(88))S_{6}^{\mathrm{new}}(\Gamma_1(88))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
88.6.a χ88(1,)\chi_{88}(1, \cdot) 88.6.a.a 2 1
88.6.a.b 3
88.6.a.c 4
88.6.a.d 4
88.6.c χ88(45,)\chi_{88}(45, \cdot) 88.6.c.a 50 1
88.6.e χ88(87,)\chi_{88}(87, \cdot) None 0 1
88.6.g χ88(43,)\chi_{88}(43, \cdot) 88.6.g.a 2 1
88.6.g.b 56
88.6.i χ88(9,)\chi_{88}(9, \cdot) 88.6.i.a 28 4
88.6.i.b 32
88.6.k χ88(19,)\chi_{88}(19, \cdot) 88.6.k.a 8 4
88.6.k.b 224
88.6.m χ88(7,)\chi_{88}(7, \cdot) None 0 4
88.6.o χ88(5,)\chi_{88}(5, \cdot) 88.6.o.a 232 4

Decomposition of S6old(Γ1(88))S_{6}^{\mathrm{old}}(\Gamma_1(88)) into lower level spaces