L(s) = 1 | − 4.35i·3-s + (−2.5 − 10.8i)5-s − 8.71i·7-s + 7.99·9-s + 11·11-s + 69.7i·13-s + (−47.5 + 10.8i)15-s + 26.1i·17-s − 68·19-s − 38.0·21-s − 117. i·23-s + (−112. + 54.4i)25-s − 152. i·27-s − 260·29-s − 175·31-s + ⋯ |
L(s) = 1 | − 0.838i·3-s + (−0.223 − 0.974i)5-s − 0.470i·7-s + 0.296·9-s + 0.301·11-s + 1.48i·13-s + (−0.817 + 0.187i)15-s + 0.373i·17-s − 0.821·19-s − 0.394·21-s − 1.06i·23-s + (−0.900 + 0.435i)25-s − 1.08i·27-s − 1.66·29-s − 1.01·31-s + ⋯ |
Λ(s)=(=(880s/2ΓC(s)L(s)(−0.223−0.974i)Λ(4−s)
Λ(s)=(=(880s/2ΓC(s+3/2)L(s)(−0.223−0.974i)Λ(1−s)
Degree: |
2 |
Conductor: |
880
= 24⋅5⋅11
|
Sign: |
−0.223−0.974i
|
Analytic conductor: |
51.9216 |
Root analytic conductor: |
7.20567 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ880(529,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 880, ( :3/2), −0.223−0.974i)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(2.5+10.8i)T |
| 11 | 1−11T |
good | 3 | 1+4.35iT−27T2 |
| 7 | 1+8.71iT−343T2 |
| 13 | 1−69.7iT−2.19e3T2 |
| 17 | 1−26.1iT−4.91e3T2 |
| 19 | 1+68T+6.85e3T2 |
| 23 | 1+117.iT−1.21e4T2 |
| 29 | 1+260T+2.43e4T2 |
| 31 | 1+175T+2.97e4T2 |
| 37 | 1−169.iT−5.06e4T2 |
| 41 | 1+380T+6.89e4T2 |
| 43 | 1+305.iT−7.95e4T2 |
| 47 | 1−305.iT−1.03e5T2 |
| 53 | 1−453.iT−1.48e5T2 |
| 59 | 1+143T+2.05e5T2 |
| 61 | 1−676T+2.26e5T2 |
| 67 | 1−527.iT−3.00e5T2 |
| 71 | 1+1.03e3T+3.57e5T2 |
| 73 | 1−331.iT−3.89e5T2 |
| 79 | 1−218T+4.93e5T2 |
| 83 | 1−758.iT−5.71e5T2 |
| 89 | 1+1.27e3T+7.04e5T2 |
| 97 | 1+771.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.973524909901191267283101494660, −8.368820472229602627060790169402, −7.29532797248977256757604664800, −6.78587756900720496850875367245, −5.74094225630581476089605988780, −4.42910729672148912344157577890, −3.95996554141189102432383437016, −2.03778139979098331335060036385, −1.32368266717115646098174359939, 0,
1.96143407284494698426627859229, 3.28368367897313935058429439411, 3.82825849100502005167608208822, 5.14681888173533660295886295544, 5.87160098364068095329608726569, 7.05289686269306588950857296615, 7.72136227794565121108694769649, 8.820366721960896394006387520889, 9.685802593369645885903864558656