Properties

Label 880.4.b.b
Level $880$
Weight $4$
Character orbit 880.b
Analytic conductor $51.922$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,4,Mod(529,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.529");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 880.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(51.9216808051\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-19}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{-19})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \beta + 1) q^{3} - 5 \beta q^{5} + ( - 4 \beta + 2) q^{7} + 8 q^{9} + 11 q^{11} + (32 \beta - 16) q^{13} + (5 \beta - 50) q^{15} + (12 \beta - 6) q^{17} - 68 q^{19} - 38 q^{21} + ( - 54 \beta + 27) q^{23} + \cdots + 88 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5 q^{5} + 16 q^{9} + 22 q^{11} - 95 q^{15} - 136 q^{19} - 76 q^{21} - 225 q^{25} - 520 q^{29} - 350 q^{31} - 190 q^{35} + 608 q^{39} - 760 q^{41} - 40 q^{45} + 534 q^{49} + 228 q^{51} - 55 q^{55}+ \cdots + 176 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
529.1
0.500000 + 2.17945i
0.500000 2.17945i
0 4.35890i 0 −2.50000 10.8972i 0 8.71780i 0 8.00000 0
529.2 0 4.35890i 0 −2.50000 + 10.8972i 0 8.71780i 0 8.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 880.4.b.b 2
4.b odd 2 1 220.4.b.a 2
5.b even 2 1 inner 880.4.b.b 2
12.b even 2 1 1980.4.c.a 2
20.d odd 2 1 220.4.b.a 2
20.e even 4 2 1100.4.a.f 2
60.h even 2 1 1980.4.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
220.4.b.a 2 4.b odd 2 1
220.4.b.a 2 20.d odd 2 1
880.4.b.b 2 1.a even 1 1 trivial
880.4.b.b 2 5.b even 2 1 inner
1100.4.a.f 2 20.e even 4 2
1980.4.c.a 2 12.b even 2 1
1980.4.c.a 2 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 19 \) acting on \(S_{4}^{\mathrm{new}}(880, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 19 \) Copy content Toggle raw display
$5$ \( T^{2} + 5T + 125 \) Copy content Toggle raw display
$7$ \( T^{2} + 76 \) Copy content Toggle raw display
$11$ \( (T - 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4864 \) Copy content Toggle raw display
$17$ \( T^{2} + 684 \) Copy content Toggle raw display
$19$ \( (T + 68)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 13851 \) Copy content Toggle raw display
$29$ \( (T + 260)^{2} \) Copy content Toggle raw display
$31$ \( (T + 175)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 28899 \) Copy content Toggle raw display
$41$ \( (T + 380)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 93100 \) Copy content Toggle raw display
$47$ \( T^{2} + 93100 \) Copy content Toggle raw display
$53$ \( T^{2} + 205504 \) Copy content Toggle raw display
$59$ \( (T + 143)^{2} \) Copy content Toggle raw display
$61$ \( (T - 676)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 278179 \) Copy content Toggle raw display
$71$ \( (T + 1035)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 109744 \) Copy content Toggle raw display
$79$ \( (T - 218)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 575244 \) Copy content Toggle raw display
$89$ \( (T + 1279)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 595251 \) Copy content Toggle raw display
show more
show less