Properties

Label 2-8800-1.1-c1-0-145
Degree $2$
Conductor $8800$
Sign $-1$
Analytic cond. $70.2683$
Root an. cond. $8.38262$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.874·3-s + 4.39·7-s − 2.23·9-s + 11-s − 5.45·13-s − 1.33·17-s + 6.79·19-s − 3.84·21-s − 2.24·23-s + 4.57·27-s − 5.19·29-s − 2.58·31-s − 0.874·33-s + 1.13·37-s + 4.77·39-s − 5.31·41-s + 4.22·43-s − 8.05·47-s + 12.2·49-s + 1.16·51-s + 13.1·53-s − 5.94·57-s + 2.95·59-s − 10.6·61-s − 9.81·63-s + 0.994·67-s + 1.96·69-s + ⋯
L(s)  = 1  − 0.504·3-s + 1.66·7-s − 0.744·9-s + 0.301·11-s − 1.51·13-s − 0.324·17-s + 1.55·19-s − 0.838·21-s − 0.468·23-s + 0.881·27-s − 0.964·29-s − 0.464·31-s − 0.152·33-s + 0.186·37-s + 0.764·39-s − 0.829·41-s + 0.643·43-s − 1.17·47-s + 1.75·49-s + 0.163·51-s + 1.80·53-s − 0.786·57-s + 0.385·59-s − 1.35·61-s − 1.23·63-s + 0.121·67-s + 0.236·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8800\)    =    \(2^{5} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(70.2683\)
Root analytic conductor: \(8.38262\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good3 \( 1 + 0.874T + 3T^{2} \)
7 \( 1 - 4.39T + 7T^{2} \)
13 \( 1 + 5.45T + 13T^{2} \)
17 \( 1 + 1.33T + 17T^{2} \)
19 \( 1 - 6.79T + 19T^{2} \)
23 \( 1 + 2.24T + 23T^{2} \)
29 \( 1 + 5.19T + 29T^{2} \)
31 \( 1 + 2.58T + 31T^{2} \)
37 \( 1 - 1.13T + 37T^{2} \)
41 \( 1 + 5.31T + 41T^{2} \)
43 \( 1 - 4.22T + 43T^{2} \)
47 \( 1 + 8.05T + 47T^{2} \)
53 \( 1 - 13.1T + 53T^{2} \)
59 \( 1 - 2.95T + 59T^{2} \)
61 \( 1 + 10.6T + 61T^{2} \)
67 \( 1 - 0.994T + 67T^{2} \)
71 \( 1 - 15.6T + 71T^{2} \)
73 \( 1 + 8.42T + 73T^{2} \)
79 \( 1 + 15.4T + 79T^{2} \)
83 \( 1 + 9.36T + 83T^{2} \)
89 \( 1 + 9.47T + 89T^{2} \)
97 \( 1 + 4.10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.40804292239927756658726337461, −6.90671234217209056825202839913, −5.71866526249771822325357424590, −5.36887217829664411263217590792, −4.80145361123876081683340000894, −4.05004323764517965687680515724, −2.94841629549116412442634721256, −2.12566991424100942240582616715, −1.25791152471458398011092572245, 0, 1.25791152471458398011092572245, 2.12566991424100942240582616715, 2.94841629549116412442634721256, 4.05004323764517965687680515724, 4.80145361123876081683340000894, 5.36887217829664411263217590792, 5.71866526249771822325357424590, 6.90671234217209056825202839913, 7.40804292239927756658726337461

Graph of the $Z$-function along the critical line