Properties

Label 8800.2.a.cd
Level 88008800
Weight 22
Character orbit 8800.a
Self dual yes
Analytic conductor 70.26870.268
Analytic rank 11
Dimension 77
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8800,2,Mod(1,8800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8800=255211 8800 = 2^{5} \cdot 5^{2} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 70.268353778770.2683537787
Analytic rank: 11
Dimension: 77
Coefficient field: Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x78x52x4+16x3+5x26x2 x^{7} - 8x^{5} - 2x^{4} + 16x^{3} + 5x^{2} - 6x - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 24 2^{4}
Twist minimal: no (minimal twist has level 1760)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β61,\beta_1,\ldots,\beta_{6} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3+(β31)q7+(β5β1+1)q9+q11+(β61)q13+(β5+β4β2++1)q17+(β6β5++β1)q19++(β5β1+1)q99+O(q100) q + \beta_1 q^{3} + (\beta_{3} - 1) q^{7} + (\beta_{5} - \beta_1 + 1) q^{9} + q^{11} + (\beta_{6} - 1) q^{13} + (\beta_{5} + \beta_{4} - \beta_{2} + \cdots + 1) q^{17} + ( - \beta_{6} - \beta_{5} + \cdots + \beta_1) q^{19}+ \cdots + (\beta_{5} - \beta_1 + 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 7qq37q7+6q9+7q1110q13+3q17+7q19+13q2114q2313q2711q2911q31q3313q37+4q39+4q412q4322q47++6q99+O(q100) 7 q - q^{3} - 7 q^{7} + 6 q^{9} + 7 q^{11} - 10 q^{13} + 3 q^{17} + 7 q^{19} + 13 q^{21} - 14 q^{23} - 13 q^{27} - 11 q^{29} - 11 q^{31} - q^{33} - 13 q^{37} + 4 q^{39} + 4 q^{41} - 2 q^{43} - 22 q^{47}+ \cdots + 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x78x52x4+16x3+5x26x2 x^{7} - 8x^{5} - 2x^{4} + 16x^{3} + 5x^{2} - 6x - 2 : Copy content Toggle raw display

β1\beta_{1}== ν4ν35ν2+3ν+3 \nu^{4} - \nu^{3} - 5\nu^{2} + 3\nu + 3 Copy content Toggle raw display
β2\beta_{2}== ν6+ν5+6ν42ν38ν23ν+1 -\nu^{6} + \nu^{5} + 6\nu^{4} - 2\nu^{3} - 8\nu^{2} - 3\nu + 1 Copy content Toggle raw display
β3\beta_{3}== ν6ν57ν4+5ν3+11ν26ν1 \nu^{6} - \nu^{5} - 7\nu^{4} + 5\nu^{3} + 11\nu^{2} - 6\nu - 1 Copy content Toggle raw display
β4\beta_{4}== ν6+8ν4+2ν316ν25ν+5 -\nu^{6} + 8\nu^{4} + 2\nu^{3} - 16\nu^{2} - 5\nu + 5 Copy content Toggle raw display
β5\beta_{5}== ν6+2ν5+6ν410ν310ν2+11ν+4 -\nu^{6} + 2\nu^{5} + 6\nu^{4} - 10\nu^{3} - 10\nu^{2} + 11\nu + 4 Copy content Toggle raw display
β6\beta_{6}== 2ν6+16ν4+2ν330ν2+7 -2\nu^{6} + 16\nu^{4} + 2\nu^{3} - 30\nu^{2} + 7 Copy content Toggle raw display
ν\nu== (β62β4+β3+β2+β1)/4 ( \beta_{6} - 2\beta_{4} + \beta_{3} + \beta_{2} + \beta_1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β5β4β3+β2+β1+4)/2 ( -\beta_{5} - \beta_{4} - \beta_{3} + \beta_{2} + \beta _1 + 4 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (3β62β58β4+3β3+7β2+7β1+2)/4 ( 3\beta_{6} - 2\beta_{5} - 8\beta_{4} + 3\beta_{3} + 7\beta_{2} + 7\beta _1 + 2 ) / 4 Copy content Toggle raw display
ν4\nu^{4}== (6β56β45β3+7β2+9β1+15)/2 ( -6\beta_{5} - 6\beta_{4} - 5\beta_{3} + 7\beta_{2} + 9\beta _1 + 15 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (5β68β520β4+3β3+21β2+23β1+10)/2 ( 5\beta_{6} - 8\beta_{5} - 20\beta_{4} + 3\beta_{3} + 21\beta_{2} + 23\beta _1 + 10 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== (β668β574β447β3+89β2+121β1+136)/4 ( \beta_{6} - 68\beta_{5} - 74\beta_{4} - 47\beta_{3} + 89\beta_{2} + 121\beta _1 + 136 ) / 4 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.71085
1.51372
−0.687115
−1.92480
−0.340436
2.44914
0.700339
0 −3.19254 0 0 0 −4.81353 0 7.19231 0
1.2 0 −2.13376 0 0 0 −1.20437 0 1.55295 0
1.3 0 −0.874674 0 0 0 4.39214 0 −2.23495 0
1.4 0 −0.441641 0 0 0 −4.16263 0 −2.80495 0
1.5 0 1.45210 0 0 0 1.03231 0 −0.891413 0
1.6 0 1.64481 0 0 0 −1.42015 0 −0.294593 0
1.7 0 2.54571 0 0 0 −0.823764 0 3.48064 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 1 -1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8800.2.a.cd 7
4.b odd 2 1 8800.2.a.ci 7
5.b even 2 1 8800.2.a.cj 7
5.c odd 4 2 1760.2.b.f yes 14
20.d odd 2 1 8800.2.a.cc 7
20.e even 4 2 1760.2.b.e 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1760.2.b.e 14 20.e even 4 2
1760.2.b.f yes 14 5.c odd 4 2
8800.2.a.cc 7 20.d odd 2 1
8800.2.a.cd 7 1.a even 1 1 trivial
8800.2.a.ci 7 4.b odd 2 1
8800.2.a.cj 7 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(8800))S_{2}^{\mathrm{new}}(\Gamma_0(8800)):

T37+T3613T357T34+46T33+12T3240T316 T_{3}^{7} + T_{3}^{6} - 13T_{3}^{5} - 7T_{3}^{4} + 46T_{3}^{3} + 12T_{3}^{2} - 40T_{3} - 16 Copy content Toggle raw display
T77+7T768T75136T74232T73+16T72+256T7+128 T_{7}^{7} + 7T_{7}^{6} - 8T_{7}^{5} - 136T_{7}^{4} - 232T_{7}^{3} + 16T_{7}^{2} + 256T_{7} + 128 Copy content Toggle raw display
T137+10T136240T134448T133+1120T132+2624T13+1024 T_{13}^{7} + 10T_{13}^{6} - 240T_{13}^{4} - 448T_{13}^{3} + 1120T_{13}^{2} + 2624T_{13} + 1024 Copy content Toggle raw display
T1773T17634T175+172T174168T173240T172+384T17128 T_{17}^{7} - 3T_{17}^{6} - 34T_{17}^{5} + 172T_{17}^{4} - 168T_{17}^{3} - 240T_{17}^{2} + 384T_{17} - 128 Copy content Toggle raw display
T1977T19652T195+340T194+608T1933584T192+3584T191024 T_{19}^{7} - 7T_{19}^{6} - 52T_{19}^{5} + 340T_{19}^{4} + 608T_{19}^{3} - 3584T_{19}^{2} + 3584T_{19} - 1024 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T7 T^{7} Copy content Toggle raw display
33 T7+T6+16 T^{7} + T^{6} + \cdots - 16 Copy content Toggle raw display
55 T7 T^{7} Copy content Toggle raw display
77 T7+7T6++128 T^{7} + 7 T^{6} + \cdots + 128 Copy content Toggle raw display
1111 (T1)7 (T - 1)^{7} Copy content Toggle raw display
1313 T7+10T6++1024 T^{7} + 10 T^{6} + \cdots + 1024 Copy content Toggle raw display
1717 T73T6+128 T^{7} - 3 T^{6} + \cdots - 128 Copy content Toggle raw display
1919 T77T6+1024 T^{7} - 7 T^{6} + \cdots - 1024 Copy content Toggle raw display
2323 T7+14T6++10816 T^{7} + 14 T^{6} + \cdots + 10816 Copy content Toggle raw display
2929 T7+11T6++256 T^{7} + 11 T^{6} + \cdots + 256 Copy content Toggle raw display
3131 T7+11T6++7424 T^{7} + 11 T^{6} + \cdots + 7424 Copy content Toggle raw display
3737 T7+13T6+256 T^{7} + 13 T^{6} + \cdots - 256 Copy content Toggle raw display
4141 T74T6+652544 T^{7} - 4 T^{6} + \cdots - 652544 Copy content Toggle raw display
4343 T7+2T6+20864 T^{7} + 2 T^{6} + \cdots - 20864 Copy content Toggle raw display
4747 T7+22T6++1262336 T^{7} + 22 T^{6} + \cdots + 1262336 Copy content Toggle raw display
5353 T73T6++8192 T^{7} - 3 T^{6} + \cdots + 8192 Copy content Toggle raw display
5959 T726T6++708608 T^{7} - 26 T^{6} + \cdots + 708608 Copy content Toggle raw display
6161 T7+5T6++20224 T^{7} + 5 T^{6} + \cdots + 20224 Copy content Toggle raw display
6767 T7+14T6+5312 T^{7} + 14 T^{6} + \cdots - 5312 Copy content Toggle raw display
7171 T73T6++256 T^{7} - 3 T^{6} + \cdots + 256 Copy content Toggle raw display
7373 T7+16T6+5921408 T^{7} + 16 T^{6} + \cdots - 5921408 Copy content Toggle raw display
7979 T7+32T6++483328 T^{7} + 32 T^{6} + \cdots + 483328 Copy content Toggle raw display
8383 T7+16T6+14848 T^{7} + 16 T^{6} + \cdots - 14848 Copy content Toggle raw display
8989 T711T6+859696 T^{7} - 11 T^{6} + \cdots - 859696 Copy content Toggle raw display
9797 T78T6+842752 T^{7} - 8 T^{6} + \cdots - 842752 Copy content Toggle raw display
show more
show less