Properties

Label 8800.2.a.cd
Level $8800$
Weight $2$
Character orbit 8800.a
Self dual yes
Analytic conductor $70.268$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8800,2,Mod(1,8800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8800 = 2^{5} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.2683537787\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 8x^{5} - 2x^{4} + 16x^{3} + 5x^{2} - 6x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 1760)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + (\beta_{3} - 1) q^{7} + (\beta_{5} - \beta_1 + 1) q^{9} + q^{11} + (\beta_{6} - 1) q^{13} + (\beta_{5} + \beta_{4} - \beta_{2} + \cdots + 1) q^{17} + ( - \beta_{6} - \beta_{5} + \cdots + \beta_1) q^{19}+ \cdots + (\beta_{5} - \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{3} - 7 q^{7} + 6 q^{9} + 7 q^{11} - 10 q^{13} + 3 q^{17} + 7 q^{19} + 13 q^{21} - 14 q^{23} - 13 q^{27} - 11 q^{29} - 11 q^{31} - q^{33} - 13 q^{37} + 4 q^{39} + 4 q^{41} - 2 q^{43} - 22 q^{47}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 8x^{5} - 2x^{4} + 16x^{3} + 5x^{2} - 6x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{4} - \nu^{3} - 5\nu^{2} + 3\nu + 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{6} + \nu^{5} + 6\nu^{4} - 2\nu^{3} - 8\nu^{2} - 3\nu + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{6} - \nu^{5} - 7\nu^{4} + 5\nu^{3} + 11\nu^{2} - 6\nu - 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\nu^{6} + 8\nu^{4} + 2\nu^{3} - 16\nu^{2} - 5\nu + 5 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\nu^{6} + 2\nu^{5} + 6\nu^{4} - 10\nu^{3} - 10\nu^{2} + 11\nu + 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -2\nu^{6} + 16\nu^{4} + 2\nu^{3} - 30\nu^{2} + 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{6} - 2\beta_{4} + \beta_{3} + \beta_{2} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{5} - \beta_{4} - \beta_{3} + \beta_{2} + \beta _1 + 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{6} - 2\beta_{5} - 8\beta_{4} + 3\beta_{3} + 7\beta_{2} + 7\beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -6\beta_{5} - 6\beta_{4} - 5\beta_{3} + 7\beta_{2} + 9\beta _1 + 15 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 5\beta_{6} - 8\beta_{5} - 20\beta_{4} + 3\beta_{3} + 21\beta_{2} + 23\beta _1 + 10 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( \beta_{6} - 68\beta_{5} - 74\beta_{4} - 47\beta_{3} + 89\beta_{2} + 121\beta _1 + 136 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.71085
1.51372
−0.687115
−1.92480
−0.340436
2.44914
0.700339
0 −3.19254 0 0 0 −4.81353 0 7.19231 0
1.2 0 −2.13376 0 0 0 −1.20437 0 1.55295 0
1.3 0 −0.874674 0 0 0 4.39214 0 −2.23495 0
1.4 0 −0.441641 0 0 0 −4.16263 0 −2.80495 0
1.5 0 1.45210 0 0 0 1.03231 0 −0.891413 0
1.6 0 1.64481 0 0 0 −1.42015 0 −0.294593 0
1.7 0 2.54571 0 0 0 −0.823764 0 3.48064 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8800.2.a.cd 7
4.b odd 2 1 8800.2.a.ci 7
5.b even 2 1 8800.2.a.cj 7
5.c odd 4 2 1760.2.b.f yes 14
20.d odd 2 1 8800.2.a.cc 7
20.e even 4 2 1760.2.b.e 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1760.2.b.e 14 20.e even 4 2
1760.2.b.f yes 14 5.c odd 4 2
8800.2.a.cc 7 20.d odd 2 1
8800.2.a.cd 7 1.a even 1 1 trivial
8800.2.a.ci 7 4.b odd 2 1
8800.2.a.cj 7 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8800))\):

\( T_{3}^{7} + T_{3}^{6} - 13T_{3}^{5} - 7T_{3}^{4} + 46T_{3}^{3} + 12T_{3}^{2} - 40T_{3} - 16 \) Copy content Toggle raw display
\( T_{7}^{7} + 7T_{7}^{6} - 8T_{7}^{5} - 136T_{7}^{4} - 232T_{7}^{3} + 16T_{7}^{2} + 256T_{7} + 128 \) Copy content Toggle raw display
\( T_{13}^{7} + 10T_{13}^{6} - 240T_{13}^{4} - 448T_{13}^{3} + 1120T_{13}^{2} + 2624T_{13} + 1024 \) Copy content Toggle raw display
\( T_{17}^{7} - 3T_{17}^{6} - 34T_{17}^{5} + 172T_{17}^{4} - 168T_{17}^{3} - 240T_{17}^{2} + 384T_{17} - 128 \) Copy content Toggle raw display
\( T_{19}^{7} - 7T_{19}^{6} - 52T_{19}^{5} + 340T_{19}^{4} + 608T_{19}^{3} - 3584T_{19}^{2} + 3584T_{19} - 1024 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} \) Copy content Toggle raw display
$3$ \( T^{7} + T^{6} + \cdots - 16 \) Copy content Toggle raw display
$5$ \( T^{7} \) Copy content Toggle raw display
$7$ \( T^{7} + 7 T^{6} + \cdots + 128 \) Copy content Toggle raw display
$11$ \( (T - 1)^{7} \) Copy content Toggle raw display
$13$ \( T^{7} + 10 T^{6} + \cdots + 1024 \) Copy content Toggle raw display
$17$ \( T^{7} - 3 T^{6} + \cdots - 128 \) Copy content Toggle raw display
$19$ \( T^{7} - 7 T^{6} + \cdots - 1024 \) Copy content Toggle raw display
$23$ \( T^{7} + 14 T^{6} + \cdots + 10816 \) Copy content Toggle raw display
$29$ \( T^{7} + 11 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$31$ \( T^{7} + 11 T^{6} + \cdots + 7424 \) Copy content Toggle raw display
$37$ \( T^{7} + 13 T^{6} + \cdots - 256 \) Copy content Toggle raw display
$41$ \( T^{7} - 4 T^{6} + \cdots - 652544 \) Copy content Toggle raw display
$43$ \( T^{7} + 2 T^{6} + \cdots - 20864 \) Copy content Toggle raw display
$47$ \( T^{7} + 22 T^{6} + \cdots + 1262336 \) Copy content Toggle raw display
$53$ \( T^{7} - 3 T^{6} + \cdots + 8192 \) Copy content Toggle raw display
$59$ \( T^{7} - 26 T^{6} + \cdots + 708608 \) Copy content Toggle raw display
$61$ \( T^{7} + 5 T^{6} + \cdots + 20224 \) Copy content Toggle raw display
$67$ \( T^{7} + 14 T^{6} + \cdots - 5312 \) Copy content Toggle raw display
$71$ \( T^{7} - 3 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$73$ \( T^{7} + 16 T^{6} + \cdots - 5921408 \) Copy content Toggle raw display
$79$ \( T^{7} + 32 T^{6} + \cdots + 483328 \) Copy content Toggle raw display
$83$ \( T^{7} + 16 T^{6} + \cdots - 14848 \) Copy content Toggle raw display
$89$ \( T^{7} - 11 T^{6} + \cdots - 859696 \) Copy content Toggle raw display
$97$ \( T^{7} - 8 T^{6} + \cdots - 842752 \) Copy content Toggle raw display
show more
show less