L(s) = 1 | + 2·2-s − 6·5-s − 8·8-s − 12·10-s + 30·11-s − 4·13-s − 16·16-s − 66·17-s − 52·19-s + 60·22-s + 114·23-s + 125·25-s − 8·26-s − 144·29-s − 196·31-s − 132·34-s + 286·37-s − 104·38-s + 48·40-s − 756·41-s + 328·43-s + 228·46-s + 228·47-s + 250·50-s − 348·53-s − 180·55-s − 288·58-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.536·5-s − 0.353·8-s − 0.379·10-s + 0.822·11-s − 0.0853·13-s − 1/4·16-s − 0.941·17-s − 0.627·19-s + 0.581·22-s + 1.03·23-s + 25-s − 0.0603·26-s − 0.922·29-s − 1.13·31-s − 0.665·34-s + 1.27·37-s − 0.443·38-s + 0.189·40-s − 2.87·41-s + 1.16·43-s + 0.730·46-s + 0.707·47-s + 0.707·50-s − 0.901·53-s − 0.441·55-s − 0.652·58-s + ⋯ |
Λ(s)=(=(777924s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(777924s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
777924
= 22⋅34⋅74
|
Sign: |
1
|
Analytic conductor: |
2708.12 |
Root analytic conductor: |
7.21385 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 777924, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.8321770494 |
L(21) |
≈ |
0.8321770494 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−pT+p2T2 |
| 3 | | 1 |
| 7 | | 1 |
good | 5 | C22 | 1+6T−89T2+6p3T3+p6T4 |
| 11 | C22 | 1−30T−431T2−30p3T3+p6T4 |
| 13 | C2 | (1+2T+p3T2)2 |
| 17 | C22 | 1+66T−557T2+66p3T3+p6T4 |
| 19 | C22 | 1+52T−4155T2+52p3T3+p6T4 |
| 23 | C22 | 1−114T+829T2−114p3T3+p6T4 |
| 29 | C2 | (1+72T+p3T2)2 |
| 31 | C22 | 1+196T+8625T2+196p3T3+p6T4 |
| 37 | C22 | 1−286T+31143T2−286p3T3+p6T4 |
| 41 | C2 | (1+378T+p3T2)2 |
| 43 | C2 | (1−164T+p3T2)2 |
| 47 | C22 | 1−228T−51839T2−228p3T3+p6T4 |
| 53 | C22 | 1+348T−27773T2+348p3T3+p6T4 |
| 59 | C22 | 1−348T−84275T2−348p3T3+p6T4 |
| 61 | C22 | 1+106T−215745T2+106p3T3+p6T4 |
| 67 | C22 | 1+596T+54453T2+596p3T3+p6T4 |
| 71 | C2 | (1+630T+p3T2)2 |
| 73 | C22 | 1+1042T+696747T2+1042p3T3+p6T4 |
| 79 | C22 | 1−88T−485295T2−88p3T3+p6T4 |
| 83 | C2 | (1+1440T+p3T2)2 |
| 89 | C22 | 1+1374T+1182907T2+1374p3T3+p6T4 |
| 97 | C2 | (1−34T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.06946770712219123274139885853, −9.467618317287535754497551797318, −8.861101604941372303105554871631, −8.755853102314902768029984070298, −8.603458514274713797807768888849, −7.52703542281427559816487036403, −7.49537530553783123397942145595, −6.83186050129593487593997467383, −6.64804965104437394035672070558, −5.82817501837948010021124025733, −5.75976421998464897104921512349, −4.85242060712740558978671319614, −4.68981066610943421652523364459, −4.00390579259311710752307069156, −3.87562107281846589953842992237, −2.96320253420233940635106291917, −2.79364914463039710885903975291, −1.76244568606205722325927727087, −1.30001616275690227137719217520, −0.21270023740601513564615700859,
0.21270023740601513564615700859, 1.30001616275690227137719217520, 1.76244568606205722325927727087, 2.79364914463039710885903975291, 2.96320253420233940635106291917, 3.87562107281846589953842992237, 4.00390579259311710752307069156, 4.68981066610943421652523364459, 4.85242060712740558978671319614, 5.75976421998464897104921512349, 5.82817501837948010021124025733, 6.64804965104437394035672070558, 6.83186050129593487593997467383, 7.49537530553783123397942145595, 7.52703542281427559816487036403, 8.603458514274713797807768888849, 8.755853102314902768029984070298, 8.861101604941372303105554871631, 9.467618317287535754497551797318, 10.06946770712219123274139885853