Properties

Label 882.4.g.q
Level $882$
Weight $4$
Character orbit 882.g
Analytic conductor $52.040$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,4,Mod(361,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.361");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 882.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.0396846251\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{6} q^{2} + (4 \zeta_{6} - 4) q^{4} - 6 \zeta_{6} q^{5} - 8 q^{8} + ( - 12 \zeta_{6} + 12) q^{10} + ( - 30 \zeta_{6} + 30) q^{11} - 2 q^{13} - 16 \zeta_{6} q^{16} + (66 \zeta_{6} - 66) q^{17} + \cdots + 34 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{4} - 6 q^{5} - 16 q^{8} + 12 q^{10} + 30 q^{11} - 4 q^{13} - 16 q^{16} - 66 q^{17} - 52 q^{19} + 48 q^{20} + 120 q^{22} + 114 q^{23} + 89 q^{25} - 4 q^{26} - 144 q^{29} - 196 q^{31}+ \cdots + 68 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 + 1.73205i 0 −2.00000 + 3.46410i −3.00000 5.19615i 0 0 −8.00000 0 6.00000 10.3923i
667.1 1.00000 1.73205i 0 −2.00000 3.46410i −3.00000 + 5.19615i 0 0 −8.00000 0 6.00000 + 10.3923i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.4.g.q 2
3.b odd 2 1 882.4.g.h 2
7.b odd 2 1 882.4.g.t 2
7.c even 3 1 882.4.a.e 1
7.c even 3 1 inner 882.4.g.q 2
7.d odd 6 1 126.4.a.b 1
7.d odd 6 1 882.4.g.t 2
21.c even 2 1 882.4.g.e 2
21.g even 6 1 126.4.a.g yes 1
21.g even 6 1 882.4.g.e 2
21.h odd 6 1 882.4.a.m 1
21.h odd 6 1 882.4.g.h 2
28.f even 6 1 1008.4.a.g 1
84.j odd 6 1 1008.4.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.4.a.b 1 7.d odd 6 1
126.4.a.g yes 1 21.g even 6 1
882.4.a.e 1 7.c even 3 1
882.4.a.m 1 21.h odd 6 1
882.4.g.e 2 21.c even 2 1
882.4.g.e 2 21.g even 6 1
882.4.g.h 2 3.b odd 2 1
882.4.g.h 2 21.h odd 6 1
882.4.g.q 2 1.a even 1 1 trivial
882.4.g.q 2 7.c even 3 1 inner
882.4.g.t 2 7.b odd 2 1
882.4.g.t 2 7.d odd 6 1
1008.4.a.g 1 28.f even 6 1
1008.4.a.n 1 84.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(882, [\chi])\):

\( T_{5}^{2} + 6T_{5} + 36 \) Copy content Toggle raw display
\( T_{11}^{2} - 30T_{11} + 900 \) Copy content Toggle raw display
\( T_{13} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 30T + 900 \) Copy content Toggle raw display
$13$ \( (T + 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 66T + 4356 \) Copy content Toggle raw display
$19$ \( T^{2} + 52T + 2704 \) Copy content Toggle raw display
$23$ \( T^{2} - 114T + 12996 \) Copy content Toggle raw display
$29$ \( (T + 72)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 196T + 38416 \) Copy content Toggle raw display
$37$ \( T^{2} - 286T + 81796 \) Copy content Toggle raw display
$41$ \( (T + 378)^{2} \) Copy content Toggle raw display
$43$ \( (T - 164)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 228T + 51984 \) Copy content Toggle raw display
$53$ \( T^{2} + 348T + 121104 \) Copy content Toggle raw display
$59$ \( T^{2} - 348T + 121104 \) Copy content Toggle raw display
$61$ \( T^{2} + 106T + 11236 \) Copy content Toggle raw display
$67$ \( T^{2} + 596T + 355216 \) Copy content Toggle raw display
$71$ \( (T + 630)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 1042 T + 1085764 \) Copy content Toggle raw display
$79$ \( T^{2} - 88T + 7744 \) Copy content Toggle raw display
$83$ \( (T + 1440)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 1374 T + 1887876 \) Copy content Toggle raw display
$97$ \( (T - 34)^{2} \) Copy content Toggle raw display
show more
show less