Properties

Label 882.4.a.e
Level $882$
Weight $4$
Character orbit 882.a
Self dual yes
Analytic conductor $52.040$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,4,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.0396846251\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + 6 q^{5} - 8 q^{8} - 12 q^{10} - 30 q^{11} - 2 q^{13} + 16 q^{16} + 66 q^{17} + 52 q^{19} + 24 q^{20} + 60 q^{22} - 114 q^{23} - 89 q^{25} + 4 q^{26} - 72 q^{29} + 196 q^{31} - 32 q^{32}+ \cdots + 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 0 4.00000 6.00000 0 0 −8.00000 0 −12.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.4.a.e 1
3.b odd 2 1 882.4.a.m 1
7.b odd 2 1 126.4.a.b 1
7.c even 3 2 882.4.g.q 2
7.d odd 6 2 882.4.g.t 2
21.c even 2 1 126.4.a.g yes 1
21.g even 6 2 882.4.g.e 2
21.h odd 6 2 882.4.g.h 2
28.d even 2 1 1008.4.a.g 1
84.h odd 2 1 1008.4.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.4.a.b 1 7.b odd 2 1
126.4.a.g yes 1 21.c even 2 1
882.4.a.e 1 1.a even 1 1 trivial
882.4.a.m 1 3.b odd 2 1
882.4.g.e 2 21.g even 6 2
882.4.g.h 2 21.h odd 6 2
882.4.g.q 2 7.c even 3 2
882.4.g.t 2 7.d odd 6 2
1008.4.a.g 1 28.d even 2 1
1008.4.a.n 1 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(882))\):

\( T_{5} - 6 \) Copy content Toggle raw display
\( T_{11} + 30 \) Copy content Toggle raw display
\( T_{13} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 6 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 30 \) Copy content Toggle raw display
$13$ \( T + 2 \) Copy content Toggle raw display
$17$ \( T - 66 \) Copy content Toggle raw display
$19$ \( T - 52 \) Copy content Toggle raw display
$23$ \( T + 114 \) Copy content Toggle raw display
$29$ \( T + 72 \) Copy content Toggle raw display
$31$ \( T - 196 \) Copy content Toggle raw display
$37$ \( T + 286 \) Copy content Toggle raw display
$41$ \( T + 378 \) Copy content Toggle raw display
$43$ \( T - 164 \) Copy content Toggle raw display
$47$ \( T + 228 \) Copy content Toggle raw display
$53$ \( T - 348 \) Copy content Toggle raw display
$59$ \( T + 348 \) Copy content Toggle raw display
$61$ \( T - 106 \) Copy content Toggle raw display
$67$ \( T - 596 \) Copy content Toggle raw display
$71$ \( T + 630 \) Copy content Toggle raw display
$73$ \( T - 1042 \) Copy content Toggle raw display
$79$ \( T + 88 \) Copy content Toggle raw display
$83$ \( T + 1440 \) Copy content Toggle raw display
$89$ \( T - 1374 \) Copy content Toggle raw display
$97$ \( T - 34 \) Copy content Toggle raw display
show more
show less