Properties

Label 882.4.a.e
Level 882882
Weight 44
Character orbit 882.a
Self dual yes
Analytic conductor 52.04052.040
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,4,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 882=23272 882 = 2 \cdot 3^{2} \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 52.039684625152.0396846251
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 126)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2q2+4q4+6q58q812q1030q112q13+16q16+66q17+52q19+24q20+60q22114q2389q25+4q2672q29+196q3132q32++34q97+O(q100) q - 2 q^{2} + 4 q^{4} + 6 q^{5} - 8 q^{8} - 12 q^{10} - 30 q^{11} - 2 q^{13} + 16 q^{16} + 66 q^{17} + 52 q^{19} + 24 q^{20} + 60 q^{22} - 114 q^{23} - 89 q^{25} + 4 q^{26} - 72 q^{29} + 196 q^{31} - 32 q^{32}+ \cdots + 34 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−2.00000 0 4.00000 6.00000 0 0 −8.00000 0 −12.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.4.a.e 1
3.b odd 2 1 882.4.a.m 1
7.b odd 2 1 126.4.a.b 1
7.c even 3 2 882.4.g.q 2
7.d odd 6 2 882.4.g.t 2
21.c even 2 1 126.4.a.g yes 1
21.g even 6 2 882.4.g.e 2
21.h odd 6 2 882.4.g.h 2
28.d even 2 1 1008.4.a.g 1
84.h odd 2 1 1008.4.a.n 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.4.a.b 1 7.b odd 2 1
126.4.a.g yes 1 21.c even 2 1
882.4.a.e 1 1.a even 1 1 trivial
882.4.a.m 1 3.b odd 2 1
882.4.g.e 2 21.g even 6 2
882.4.g.h 2 21.h odd 6 2
882.4.g.q 2 7.c even 3 2
882.4.g.t 2 7.d odd 6 2
1008.4.a.g 1 28.d even 2 1
1008.4.a.n 1 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(882))S_{4}^{\mathrm{new}}(\Gamma_0(882)):

T56 T_{5} - 6 Copy content Toggle raw display
T11+30 T_{11} + 30 Copy content Toggle raw display
T13+2 T_{13} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+2 T + 2 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T6 T - 6 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T+30 T + 30 Copy content Toggle raw display
1313 T+2 T + 2 Copy content Toggle raw display
1717 T66 T - 66 Copy content Toggle raw display
1919 T52 T - 52 Copy content Toggle raw display
2323 T+114 T + 114 Copy content Toggle raw display
2929 T+72 T + 72 Copy content Toggle raw display
3131 T196 T - 196 Copy content Toggle raw display
3737 T+286 T + 286 Copy content Toggle raw display
4141 T+378 T + 378 Copy content Toggle raw display
4343 T164 T - 164 Copy content Toggle raw display
4747 T+228 T + 228 Copy content Toggle raw display
5353 T348 T - 348 Copy content Toggle raw display
5959 T+348 T + 348 Copy content Toggle raw display
6161 T106 T - 106 Copy content Toggle raw display
6767 T596 T - 596 Copy content Toggle raw display
7171 T+630 T + 630 Copy content Toggle raw display
7373 T1042 T - 1042 Copy content Toggle raw display
7979 T+88 T + 88 Copy content Toggle raw display
8383 T+1440 T + 1440 Copy content Toggle raw display
8989 T1374 T - 1374 Copy content Toggle raw display
9797 T34 T - 34 Copy content Toggle raw display
show more
show less