L(s) = 1 | − 0.167·2-s − 1.97·4-s + 2.16·5-s + 3.80·7-s + 0.665·8-s − 0.362·10-s + 11-s − 0.167·13-s − 0.637·14-s + 3.83·16-s − 1.13·17-s − 4.63·19-s − 4.27·20-s − 0.167·22-s + 4.13·23-s − 0.302·25-s + 0.0280·26-s − 7.50·28-s + 9.97·29-s − 1.02·31-s − 1.97·32-s + 0.190·34-s + 8.24·35-s − 4.94·37-s + 0.776·38-s + 1.44·40-s − 2.97·41-s + ⋯ |
L(s) = 1 | − 0.118·2-s − 0.985·4-s + 0.969·5-s + 1.43·7-s + 0.235·8-s − 0.114·10-s + 0.301·11-s − 0.0464·13-s − 0.170·14-s + 0.958·16-s − 0.276·17-s − 1.06·19-s − 0.955·20-s − 0.0357·22-s + 0.863·23-s − 0.0604·25-s + 0.00549·26-s − 1.41·28-s + 1.85·29-s − 0.184·31-s − 0.348·32-s + 0.0327·34-s + 1.39·35-s − 0.812·37-s + 0.125·38-s + 0.227·40-s − 0.464·41-s + ⋯ |
Λ(s)=(=(891s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(891s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.670987905 |
L(21) |
≈ |
1.670987905 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1−T |
good | 2 | 1+0.167T+2T2 |
| 5 | 1−2.16T+5T2 |
| 7 | 1−3.80T+7T2 |
| 13 | 1+0.167T+13T2 |
| 17 | 1+1.13T+17T2 |
| 19 | 1+4.63T+19T2 |
| 23 | 1−4.13T+23T2 |
| 29 | 1−9.97T+29T2 |
| 31 | 1+1.02T+31T2 |
| 37 | 1+4.94T+37T2 |
| 41 | 1+2.97T+41T2 |
| 43 | 1−5.80T+43T2 |
| 47 | 1−6.63T+47T2 |
| 53 | 1−11.2T+53T2 |
| 59 | 1−14.4T+59T2 |
| 61 | 1+2.80T+61T2 |
| 67 | 1+14.4T+67T2 |
| 71 | 1+12.5T+71T2 |
| 73 | 1−14.5T+73T2 |
| 79 | 1−7.44T+79T2 |
| 83 | 1−6T+83T2 |
| 89 | 1−8.02T+89T2 |
| 97 | 1−6.27T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.23551248554371332264292310984, −9.034659748140168951726846094451, −8.697287105503682778645045988066, −7.80013618321647868680495718775, −6.64549732038620289286041608268, −5.54779331247304747450148310924, −4.85238249206593321434519936238, −4.04088199767727839339744429041, −2.35353106777765548274119533919, −1.18072091599964512308474894277,
1.18072091599964512308474894277, 2.35353106777765548274119533919, 4.04088199767727839339744429041, 4.85238249206593321434519936238, 5.54779331247304747450148310924, 6.64549732038620289286041608268, 7.80013618321647868680495718775, 8.697287105503682778645045988066, 9.034659748140168951726846094451, 10.23551248554371332264292310984