Properties

Label 2-891-1.1-c1-0-12
Degree $2$
Conductor $891$
Sign $1$
Analytic cond. $7.11467$
Root an. cond. $2.66733$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.167·2-s − 1.97·4-s + 2.16·5-s + 3.80·7-s + 0.665·8-s − 0.362·10-s + 11-s − 0.167·13-s − 0.637·14-s + 3.83·16-s − 1.13·17-s − 4.63·19-s − 4.27·20-s − 0.167·22-s + 4.13·23-s − 0.302·25-s + 0.0280·26-s − 7.50·28-s + 9.97·29-s − 1.02·31-s − 1.97·32-s + 0.190·34-s + 8.24·35-s − 4.94·37-s + 0.776·38-s + 1.44·40-s − 2.97·41-s + ⋯
L(s)  = 1  − 0.118·2-s − 0.985·4-s + 0.969·5-s + 1.43·7-s + 0.235·8-s − 0.114·10-s + 0.301·11-s − 0.0464·13-s − 0.170·14-s + 0.958·16-s − 0.276·17-s − 1.06·19-s − 0.955·20-s − 0.0357·22-s + 0.863·23-s − 0.0604·25-s + 0.00549·26-s − 1.41·28-s + 1.85·29-s − 0.184·31-s − 0.348·32-s + 0.0327·34-s + 1.39·35-s − 0.812·37-s + 0.125·38-s + 0.227·40-s − 0.464·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(891\)    =    \(3^{4} \cdot 11\)
Sign: $1$
Analytic conductor: \(7.11467\)
Root analytic conductor: \(2.66733\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 891,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.670987905\)
\(L(\frac12)\) \(\approx\) \(1.670987905\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 - T \)
good2 \( 1 + 0.167T + 2T^{2} \)
5 \( 1 - 2.16T + 5T^{2} \)
7 \( 1 - 3.80T + 7T^{2} \)
13 \( 1 + 0.167T + 13T^{2} \)
17 \( 1 + 1.13T + 17T^{2} \)
19 \( 1 + 4.63T + 19T^{2} \)
23 \( 1 - 4.13T + 23T^{2} \)
29 \( 1 - 9.97T + 29T^{2} \)
31 \( 1 + 1.02T + 31T^{2} \)
37 \( 1 + 4.94T + 37T^{2} \)
41 \( 1 + 2.97T + 41T^{2} \)
43 \( 1 - 5.80T + 43T^{2} \)
47 \( 1 - 6.63T + 47T^{2} \)
53 \( 1 - 11.2T + 53T^{2} \)
59 \( 1 - 14.4T + 59T^{2} \)
61 \( 1 + 2.80T + 61T^{2} \)
67 \( 1 + 14.4T + 67T^{2} \)
71 \( 1 + 12.5T + 71T^{2} \)
73 \( 1 - 14.5T + 73T^{2} \)
79 \( 1 - 7.44T + 79T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 - 8.02T + 89T^{2} \)
97 \( 1 - 6.27T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23551248554371332264292310984, −9.034659748140168951726846094451, −8.697287105503682778645045988066, −7.80013618321647868680495718775, −6.64549732038620289286041608268, −5.54779331247304747450148310924, −4.85238249206593321434519936238, −4.04088199767727839339744429041, −2.35353106777765548274119533919, −1.18072091599964512308474894277, 1.18072091599964512308474894277, 2.35353106777765548274119533919, 4.04088199767727839339744429041, 4.85238249206593321434519936238, 5.54779331247304747450148310924, 6.64549732038620289286041608268, 7.80013618321647868680495718775, 8.697287105503682778645045988066, 9.034659748140168951726846094451, 10.23551248554371332264292310984

Graph of the $Z$-function along the critical line