Properties

Label 891.2.a.n
Level $891$
Weight $2$
Character orbit 891.a
Self dual yes
Analytic conductor $7.115$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(1,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 2) q^{4} + ( - \beta_1 + 2) q^{5} + ( - \beta_{2} + \beta_1) q^{7} + (2 \beta_1 + 1) q^{8} + ( - \beta_{2} + 2 \beta_1 - 4) q^{10} + q^{11} + \beta_1 q^{13} + (\beta_{2} - 2 \beta_1 + 3) q^{14}+ \cdots + ( - 3 \beta_{2} + \beta_1 - 13) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{4} + 6 q^{5} + 3 q^{8} - 12 q^{10} + 3 q^{11} + 9 q^{14} + 12 q^{16} + 9 q^{17} - 3 q^{19} + 9 q^{20} + 9 q^{25} + 12 q^{26} - 21 q^{28} + 18 q^{29} - 15 q^{31} + 6 q^{32} + 15 q^{34} - 9 q^{35}+ \cdots - 39 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 6x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.36147
−0.167449
2.52892
−2.36147 0 3.57653 4.36147 0 −3.93800 −3.72294 0 −10.2995
1.2 −0.167449 0 −1.97196 2.16745 0 3.80451 0.665102 0 −0.362938
1.3 2.52892 0 4.39543 −0.528918 0 0.133492 6.05784 0 −1.33759
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 891.2.a.n yes 3
3.b odd 2 1 891.2.a.m 3
9.c even 3 2 891.2.e.r 6
9.d odd 6 2 891.2.e.s 6
11.b odd 2 1 9801.2.a.bg 3
33.d even 2 1 9801.2.a.bf 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
891.2.a.m 3 3.b odd 2 1
891.2.a.n yes 3 1.a even 1 1 trivial
891.2.e.r 6 9.c even 3 2
891.2.e.s 6 9.d odd 6 2
9801.2.a.bf 3 33.d even 2 1
9801.2.a.bg 3 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(891))\):

\( T_{2}^{3} - 6T_{2} - 1 \) Copy content Toggle raw display
\( T_{5}^{3} - 6T_{5}^{2} + 6T_{5} + 5 \) Copy content Toggle raw display
\( T_{7}^{3} - 15T_{7} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 6T - 1 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 6 T^{2} + \cdots + 5 \) Copy content Toggle raw display
$7$ \( T^{3} - 15T + 2 \) Copy content Toggle raw display
$11$ \( (T - 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 6T - 1 \) Copy content Toggle raw display
$17$ \( T^{3} - 9 T^{2} + \cdots + 20 \) Copy content Toggle raw display
$19$ \( T^{3} + 3 T^{2} + \cdots - 90 \) Copy content Toggle raw display
$23$ \( T^{3} - 21T + 16 \) Copy content Toggle raw display
$29$ \( T^{3} - 18 T^{2} + \cdots - 159 \) Copy content Toggle raw display
$31$ \( T^{3} + 15 T^{2} + \cdots + 50 \) Copy content Toggle raw display
$37$ \( T^{3} - 9 T^{2} + \cdots + 237 \) Copy content Toggle raw display
$41$ \( T^{3} - 3 T^{2} + \cdots + 26 \) Copy content Toggle raw display
$43$ \( T^{3} - 6 T^{2} + \cdots + 24 \) Copy content Toggle raw display
$47$ \( T^{3} - 9 T^{2} + \cdots + 124 \) Copy content Toggle raw display
$53$ \( T^{3} + 3 T^{2} + \cdots - 150 \) Copy content Toggle raw display
$59$ \( T^{3} - 6 T^{2} + \cdots + 802 \) Copy content Toggle raw display
$61$ \( T^{3} - 3 T^{2} + \cdots + 12 \) Copy content Toggle raw display
$67$ \( T^{3} + 21 T^{2} + \cdots - 458 \) Copy content Toggle raw display
$71$ \( T^{3} + 3 T^{2} + \cdots + 120 \) Copy content Toggle raw display
$73$ \( T^{3} + 3 T^{2} + \cdots - 967 \) Copy content Toggle raw display
$79$ \( T^{3} + 3 T^{2} + \cdots + 292 \) Copy content Toggle raw display
$83$ \( (T - 6)^{3} \) Copy content Toggle raw display
$89$ \( T^{3} - 36 T^{2} + \cdots - 1569 \) Copy content Toggle raw display
$97$ \( T^{3} + 6 T^{2} + \cdots - 32 \) Copy content Toggle raw display
show more
show less