Properties

Label 891.2.e.r
Level $891$
Weight $2$
Character orbit 891.e
Analytic conductor $7.115$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(298,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.298");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.2101707.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 6x^{4} - 4x^{3} - 12x^{2} - 18x + 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{4} - \beta_{2}) q^{2} + ( - \beta_{5} - 2 \beta_{3} - \beta_1) q^{4} + (\beta_{4} - 2 \beta_{3}) q^{5} + ( - \beta_{5} + \beta_{4} - \beta_{2}) q^{7} + (2 \beta_{2} + 1) q^{8} + (2 \beta_{2} - \beta_1 - 4) q^{10}+ \cdots + (\beta_{2} - 3 \beta_1 - 13) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 6 q^{5} + 6 q^{8} - 24 q^{10} - 3 q^{11} - 9 q^{14} - 12 q^{16} + 18 q^{17} - 6 q^{19} - 9 q^{20} - 9 q^{25} + 24 q^{26} - 42 q^{28} - 18 q^{29} + 15 q^{31} - 6 q^{32} - 15 q^{34} - 18 q^{35}+ \cdots - 78 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 6x^{4} - 4x^{3} - 12x^{2} - 18x + 31 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} - 7\nu^{4} - 5\nu^{3} + 19\nu^{2} + 45\nu + 183 ) / 100 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -7\nu^{5} + \nu^{4} - 35\nu^{3} + 33\nu^{2} + 165\nu + 81 ) / 100 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 17\nu^{5} + 19\nu^{4} + 135\nu^{3} + 77\nu^{2} - 65\nu - 361 ) / 100 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 37\nu^{5} + 59\nu^{4} + 285\nu^{3} + 297\nu^{2} - 165\nu - 971 ) / 100 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 43\nu^{5} + 51\nu^{4} + 315\nu^{3} + 183\nu^{2} - 185\nu - 1069 ) / 100 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{5} - \beta_{4} - 2\beta_{3} + 2\beta_{2} + \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{5} + 2\beta_{4} - 2\beta_{3} - \beta_{2} + 4\beta _1 - 5 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -4\beta_{5} + 10\beta_{3} - 2\beta _1 - 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 4\beta_{5} + \beta_{4} - 10\beta_{3} + 10\beta_{2} - 31\beta _1 + 65 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 103\beta_{5} - 14\beta_{4} - 208\beta_{3} + \beta_{2} + 68\beta _1 + 89 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(1\) \(-\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
298.1
1.26446 + 0.0756139i
−0.0837246 2.82222i
−1.18073 + 1.01456i
1.26446 0.0756139i
−0.0837246 + 2.82222i
−1.18073 1.01456i
−1.26446 + 2.19011i 0 −2.19771 3.80655i 0.264459 + 0.458056i 0 −0.0667460 + 0.115607i 6.05784 0 −1.33759
298.2 0.0837246 0.145015i 0 0.985980 + 1.70777i −1.08372 1.87707i 0 −1.90226 + 3.29480i 0.665102 0 −0.362938
298.3 1.18073 2.04509i 0 −1.78827 3.09737i −2.18073 3.77714i 0 1.96900 3.41041i −3.72294 0 −10.2995
595.1 −1.26446 2.19011i 0 −2.19771 + 3.80655i 0.264459 0.458056i 0 −0.0667460 0.115607i 6.05784 0 −1.33759
595.2 0.0837246 + 0.145015i 0 0.985980 1.70777i −1.08372 + 1.87707i 0 −1.90226 3.29480i 0.665102 0 −0.362938
595.3 1.18073 + 2.04509i 0 −1.78827 + 3.09737i −2.18073 + 3.77714i 0 1.96900 + 3.41041i −3.72294 0 −10.2995
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 298.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 891.2.e.r 6
3.b odd 2 1 891.2.e.s 6
9.c even 3 1 891.2.a.n yes 3
9.c even 3 1 inner 891.2.e.r 6
9.d odd 6 1 891.2.a.m 3
9.d odd 6 1 891.2.e.s 6
99.g even 6 1 9801.2.a.bf 3
99.h odd 6 1 9801.2.a.bg 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
891.2.a.m 3 9.d odd 6 1
891.2.a.n yes 3 9.c even 3 1
891.2.e.r 6 1.a even 1 1 trivial
891.2.e.r 6 9.c even 3 1 inner
891.2.e.s 6 3.b odd 2 1
891.2.e.s 6 9.d odd 6 1
9801.2.a.bf 3 99.g even 6 1
9801.2.a.bg 3 99.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(891, [\chi])\):

\( T_{2}^{6} + 6T_{2}^{4} - 2T_{2}^{3} + 36T_{2}^{2} - 6T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{6} + 6T_{5}^{5} + 30T_{5}^{4} + 46T_{5}^{3} + 66T_{5}^{2} - 30T_{5} + 25 \) Copy content Toggle raw display
\( T_{7}^{6} + 15T_{7}^{4} + 4T_{7}^{3} + 225T_{7}^{2} + 30T_{7} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 6 T^{5} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( T^{6} + 15 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$11$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( (T^{3} - 9 T^{2} + 6 T + 20)^{2} \) Copy content Toggle raw display
$19$ \( (T^{3} + 3 T^{2} - 27 T - 90)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 21 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$29$ \( T^{6} + 18 T^{5} + \cdots + 25281 \) Copy content Toggle raw display
$31$ \( T^{6} - 15 T^{5} + \cdots + 2500 \) Copy content Toggle raw display
$37$ \( (T^{3} - 9 T^{2} + \cdots + 237)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + 3 T^{5} + \cdots + 676 \) Copy content Toggle raw display
$43$ \( T^{6} + 6 T^{5} + \cdots + 576 \) Copy content Toggle raw display
$47$ \( T^{6} + 9 T^{5} + \cdots + 15376 \) Copy content Toggle raw display
$53$ \( (T^{3} + 3 T^{2} + \cdots - 150)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 6 T^{5} + \cdots + 643204 \) Copy content Toggle raw display
$61$ \( T^{6} + 3 T^{5} + \cdots + 144 \) Copy content Toggle raw display
$67$ \( T^{6} - 21 T^{5} + \cdots + 209764 \) Copy content Toggle raw display
$71$ \( (T^{3} + 3 T^{2} + \cdots + 120)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} + 3 T^{2} + \cdots - 967)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} - 3 T^{5} + \cdots + 85264 \) Copy content Toggle raw display
$83$ \( (T^{2} + 6 T + 36)^{3} \) Copy content Toggle raw display
$89$ \( (T^{3} - 36 T^{2} + \cdots - 1569)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} - 6 T^{5} + \cdots + 1024 \) Copy content Toggle raw display
show more
show less