Properties

Label 2-8925-1.1-c1-0-225
Degree $2$
Conductor $8925$
Sign $-1$
Analytic cond. $71.2664$
Root an. cond. $8.44194$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.23·2-s − 3-s + 2.98·4-s + 2.23·6-s + 7-s − 2.20·8-s + 9-s + 5.44·11-s − 2.98·12-s + 1.71·13-s − 2.23·14-s − 1.05·16-s − 17-s − 2.23·18-s − 0.444·19-s − 21-s − 12.1·22-s − 5.57·23-s + 2.20·24-s − 3.82·26-s − 27-s + 2.98·28-s + 1.30·29-s − 1.26·31-s + 6.75·32-s − 5.44·33-s + 2.23·34-s + ⋯
L(s)  = 1  − 1.57·2-s − 0.577·3-s + 1.49·4-s + 0.911·6-s + 0.377·7-s − 0.779·8-s + 0.333·9-s + 1.64·11-s − 0.862·12-s + 0.474·13-s − 0.596·14-s − 0.262·16-s − 0.242·17-s − 0.526·18-s − 0.102·19-s − 0.218·21-s − 2.59·22-s − 1.16·23-s + 0.450·24-s − 0.749·26-s − 0.192·27-s + 0.564·28-s + 0.242·29-s − 0.227·31-s + 1.19·32-s − 0.947·33-s + 0.382·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8925\)    =    \(3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(71.2664\)
Root analytic conductor: \(8.44194\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8925,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good2 \( 1 + 2.23T + 2T^{2} \)
11 \( 1 - 5.44T + 11T^{2} \)
13 \( 1 - 1.71T + 13T^{2} \)
19 \( 1 + 0.444T + 19T^{2} \)
23 \( 1 + 5.57T + 23T^{2} \)
29 \( 1 - 1.30T + 29T^{2} \)
31 \( 1 + 1.26T + 31T^{2} \)
37 \( 1 - 9.54T + 37T^{2} \)
41 \( 1 - 8.54T + 41T^{2} \)
43 \( 1 + 11.3T + 43T^{2} \)
47 \( 1 + 3.70T + 47T^{2} \)
53 \( 1 - 1.30T + 53T^{2} \)
59 \( 1 - 5.12T + 59T^{2} \)
61 \( 1 - 15.0T + 61T^{2} \)
67 \( 1 + 12.2T + 67T^{2} \)
71 \( 1 + 15.3T + 71T^{2} \)
73 \( 1 + 11.0T + 73T^{2} \)
79 \( 1 + 16.8T + 79T^{2} \)
83 \( 1 + 12.1T + 83T^{2} \)
89 \( 1 + 5.39T + 89T^{2} \)
97 \( 1 + 15.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.41937892934407181720432185437, −6.90235330603893283405116427824, −6.24144096668748190815268413534, −5.68752926405416584060035217318, −4.38763011634132434671420322050, −4.06347309706041797464556434317, −2.71869653832623867266752414121, −1.61305860688595658047155301805, −1.19642744857891475517848157584, 0, 1.19642744857891475517848157584, 1.61305860688595658047155301805, 2.71869653832623867266752414121, 4.06347309706041797464556434317, 4.38763011634132434671420322050, 5.68752926405416584060035217318, 6.24144096668748190815268413534, 6.90235330603893283405116427824, 7.41937892934407181720432185437

Graph of the $Z$-function along the critical line