Properties

Label 8925.2.a.cd
Level 89258925
Weight 22
Character orbit 8925.a
Self dual yes
Analytic conductor 71.26671.266
Analytic rank 11
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8925,2,Mod(1,8925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 8925=352717 8925 = 3 \cdot 5^{2} \cdot 7 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 8925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 71.266483804071.2664838040
Analytic rank: 11
Dimension: 66
Coefficient field: 6.6.5869904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x56x4+4x3+9x23x2 x^{6} - x^{5} - 6x^{4} + 4x^{3} + 9x^{2} - 3x - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1785)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2q3+β2q4+β1q6+q7+(β3β2+β1)q8+q9+(β4+β3+2β2β1)q11β2q12+(2β5+β4+β11)q13++(β4+β3+2β2β1)q99+O(q100) q - \beta_1 q^{2} - q^{3} + \beta_{2} q^{4} + \beta_1 q^{6} + q^{7} + ( - \beta_{3} - \beta_{2} + \beta_1) q^{8} + q^{9} + (\beta_{4} + \beta_{3} + 2 \beta_{2} - \beta_1) q^{11} - \beta_{2} q^{12} + (2 \beta_{5} + \beta_{4} + \beta_1 - 1) q^{13}+ \cdots + (\beta_{4} + \beta_{3} + 2 \beta_{2} - \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6qq26q3+q4+q6+6q73q8+6q9+4q11q127q13q149q166q17q186q21+6q2217q23+3q248q266q27++4q99+O(q100) 6 q - q^{2} - 6 q^{3} + q^{4} + q^{6} + 6 q^{7} - 3 q^{8} + 6 q^{9} + 4 q^{11} - q^{12} - 7 q^{13} - q^{14} - 9 q^{16} - 6 q^{17} - q^{18} - 6 q^{21} + 6 q^{22} - 17 q^{23} + 3 q^{24} - 8 q^{26} - 6 q^{27}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x56x4+4x3+9x23x2 x^{6} - x^{5} - 6x^{4} + 4x^{3} + 9x^{2} - 3x - 2 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν22 \nu^{2} - 2 Copy content Toggle raw display
β3\beta_{3}== ν3ν23ν+2 \nu^{3} - \nu^{2} - 3\nu + 2 Copy content Toggle raw display
β4\beta_{4}== ν4ν34ν2+2ν+2 \nu^{4} - \nu^{3} - 4\nu^{2} + 2\nu + 2 Copy content Toggle raw display
β5\beta_{5}== ν5ν45ν3+3ν2+5ν1 \nu^{5} - \nu^{4} - 5\nu^{3} + 3\nu^{2} + 5\nu - 1 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+2 \beta_{2} + 2 Copy content Toggle raw display
ν3\nu^{3}== β3+β2+3β1 \beta_{3} + \beta_{2} + 3\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β4+β3+5β2+β1+6 \beta_{4} + \beta_{3} + 5\beta_{2} + \beta _1 + 6 Copy content Toggle raw display
ν5\nu^{5}== β5+β4+6β3+7β2+11β1+1 \beta_{5} + \beta_{4} + 6\beta_{3} + 7\beta_{2} + 11\beta _1 + 1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.23321
1.56429
0.672910
−0.364731
−1.27240
−1.83328
−2.23321 −1.00000 2.98722 0 2.23321 1.00000 −2.20468 1.00000 0
1.2 −1.56429 −1.00000 0.447013 0 1.56429 1.00000 2.42933 1.00000 0
1.3 −0.672910 −1.00000 −1.54719 0 0.672910 1.00000 2.38694 1.00000 0
1.4 0.364731 −1.00000 −1.86697 0 −0.364731 1.00000 −1.41040 1.00000 0
1.5 1.27240 −1.00000 −0.381001 0 −1.27240 1.00000 −3.02958 1.00000 0
1.6 1.83328 −1.00000 1.36093 0 −1.83328 1.00000 −1.17160 1.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
55 1 -1
77 1 -1
1717 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8925.2.a.cd 6
5.b even 2 1 8925.2.a.ce 6
5.c odd 4 2 1785.2.g.d 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1785.2.g.d 12 5.c odd 4 2
8925.2.a.cd 6 1.a even 1 1 trivial
8925.2.a.ce 6 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(8925))S_{2}^{\mathrm{new}}(\Gamma_0(8925)):

T26+T256T244T23+9T22+3T22 T_{2}^{6} + T_{2}^{5} - 6T_{2}^{4} - 4T_{2}^{3} + 9T_{2}^{2} + 3T_{2} - 2 Copy content Toggle raw display
T1164T11532T114+92T113+248T112188T11+32 T_{11}^{6} - 4T_{11}^{5} - 32T_{11}^{4} + 92T_{11}^{3} + 248T_{11}^{2} - 188T_{11} + 32 Copy content Toggle raw display
T136+7T13522T134226T133220T132+684T13+668 T_{13}^{6} + 7T_{13}^{5} - 22T_{13}^{4} - 226T_{13}^{3} - 220T_{13}^{2} + 684T_{13} + 668 Copy content Toggle raw display
T236+17T235+98T234+208T233+80T23280T2332 T_{23}^{6} + 17T_{23}^{5} + 98T_{23}^{4} + 208T_{23}^{3} + 80T_{23}^{2} - 80T_{23} - 32 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6+T56T4+2 T^{6} + T^{5} - 6 T^{4} + \cdots - 2 Copy content Toggle raw display
33 (T+1)6 (T + 1)^{6} Copy content Toggle raw display
55 T6 T^{6} Copy content Toggle raw display
77 (T1)6 (T - 1)^{6} Copy content Toggle raw display
1111 T64T5++32 T^{6} - 4 T^{5} + \cdots + 32 Copy content Toggle raw display
1313 T6+7T5++668 T^{6} + 7 T^{5} + \cdots + 668 Copy content Toggle raw display
1717 (T+1)6 (T + 1)^{6} Copy content Toggle raw display
1919 T648T4++256 T^{6} - 48 T^{4} + \cdots + 256 Copy content Toggle raw display
2323 T6+17T5+32 T^{6} + 17 T^{5} + \cdots - 32 Copy content Toggle raw display
2929 T68T5+1816 T^{6} - 8 T^{5} + \cdots - 1816 Copy content Toggle raw display
3131 T67T5++292 T^{6} - 7 T^{5} + \cdots + 292 Copy content Toggle raw display
3737 T67T5++32 T^{6} - 7 T^{5} + \cdots + 32 Copy content Toggle raw display
4141 T67T5+32 T^{6} - 7 T^{5} + \cdots - 32 Copy content Toggle raw display
4343 T6+20T5+2272 T^{6} + 20 T^{5} + \cdots - 2272 Copy content Toggle raw display
4747 T615T5+1832 T^{6} - 15 T^{5} + \cdots - 1832 Copy content Toggle raw display
5353 T68T5++752 T^{6} - 8 T^{5} + \cdots + 752 Copy content Toggle raw display
5959 T68T5++8000 T^{6} - 8 T^{5} + \cdots + 8000 Copy content Toggle raw display
6161 T625T5++284 T^{6} - 25 T^{5} + \cdots + 284 Copy content Toggle raw display
6767 T6+36T5+7984 T^{6} + 36 T^{5} + \cdots - 7984 Copy content Toggle raw display
7171 T6+14T5++119528 T^{6} + 14 T^{5} + \cdots + 119528 Copy content Toggle raw display
7373 T6+10T5++1216 T^{6} + 10 T^{5} + \cdots + 1216 Copy content Toggle raw display
7979 T6+30T5++684032 T^{6} + 30 T^{5} + \cdots + 684032 Copy content Toggle raw display
8383 T6+37T5+67768 T^{6} + 37 T^{5} + \cdots - 67768 Copy content Toggle raw display
8989 T626T5++150272 T^{6} - 26 T^{5} + \cdots + 150272 Copy content Toggle raw display
9797 T6+38T5+109456 T^{6} + 38 T^{5} + \cdots - 109456 Copy content Toggle raw display
show more
show less