Properties

Label 8925.2.a.cd
Level $8925$
Weight $2$
Character orbit 8925.a
Self dual yes
Analytic conductor $71.266$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8925,2,Mod(1,8925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8925 = 3 \cdot 5^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.2664838040\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.5869904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 6x^{4} + 4x^{3} + 9x^{2} - 3x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1785)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{3} + \beta_{2} q^{4} + \beta_1 q^{6} + q^{7} + ( - \beta_{3} - \beta_{2} + \beta_1) q^{8} + q^{9} + (\beta_{4} + \beta_{3} + 2 \beta_{2} - \beta_1) q^{11} - \beta_{2} q^{12} + (2 \beta_{5} + \beta_{4} + \beta_1 - 1) q^{13}+ \cdots + (\beta_{4} + \beta_{3} + 2 \beta_{2} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - 6 q^{3} + q^{4} + q^{6} + 6 q^{7} - 3 q^{8} + 6 q^{9} + 4 q^{11} - q^{12} - 7 q^{13} - q^{14} - 9 q^{16} - 6 q^{17} - q^{18} - 6 q^{21} + 6 q^{22} - 17 q^{23} + 3 q^{24} - 8 q^{26} - 6 q^{27}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 6x^{4} + 4x^{3} + 9x^{2} - 3x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 3\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - \nu^{3} - 4\nu^{2} + 2\nu + 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - \nu^{4} - 5\nu^{3} + 3\nu^{2} + 5\nu - 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + \beta_{3} + 5\beta_{2} + \beta _1 + 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + \beta_{4} + 6\beta_{3} + 7\beta_{2} + 11\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.23321
1.56429
0.672910
−0.364731
−1.27240
−1.83328
−2.23321 −1.00000 2.98722 0 2.23321 1.00000 −2.20468 1.00000 0
1.2 −1.56429 −1.00000 0.447013 0 1.56429 1.00000 2.42933 1.00000 0
1.3 −0.672910 −1.00000 −1.54719 0 0.672910 1.00000 2.38694 1.00000 0
1.4 0.364731 −1.00000 −1.86697 0 −0.364731 1.00000 −1.41040 1.00000 0
1.5 1.27240 −1.00000 −0.381001 0 −1.27240 1.00000 −3.02958 1.00000 0
1.6 1.83328 −1.00000 1.36093 0 −1.83328 1.00000 −1.17160 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8925.2.a.cd 6
5.b even 2 1 8925.2.a.ce 6
5.c odd 4 2 1785.2.g.d 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1785.2.g.d 12 5.c odd 4 2
8925.2.a.cd 6 1.a even 1 1 trivial
8925.2.a.ce 6 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8925))\):

\( T_{2}^{6} + T_{2}^{5} - 6T_{2}^{4} - 4T_{2}^{3} + 9T_{2}^{2} + 3T_{2} - 2 \) Copy content Toggle raw display
\( T_{11}^{6} - 4T_{11}^{5} - 32T_{11}^{4} + 92T_{11}^{3} + 248T_{11}^{2} - 188T_{11} + 32 \) Copy content Toggle raw display
\( T_{13}^{6} + 7T_{13}^{5} - 22T_{13}^{4} - 226T_{13}^{3} - 220T_{13}^{2} + 684T_{13} + 668 \) Copy content Toggle raw display
\( T_{23}^{6} + 17T_{23}^{5} + 98T_{23}^{4} + 208T_{23}^{3} + 80T_{23}^{2} - 80T_{23} - 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + T^{5} - 6 T^{4} + \cdots - 2 \) Copy content Toggle raw display
$3$ \( (T + 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( (T - 1)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} - 4 T^{5} + \cdots + 32 \) Copy content Toggle raw display
$13$ \( T^{6} + 7 T^{5} + \cdots + 668 \) Copy content Toggle raw display
$17$ \( (T + 1)^{6} \) Copy content Toggle raw display
$19$ \( T^{6} - 48 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$23$ \( T^{6} + 17 T^{5} + \cdots - 32 \) Copy content Toggle raw display
$29$ \( T^{6} - 8 T^{5} + \cdots - 1816 \) Copy content Toggle raw display
$31$ \( T^{6} - 7 T^{5} + \cdots + 292 \) Copy content Toggle raw display
$37$ \( T^{6} - 7 T^{5} + \cdots + 32 \) Copy content Toggle raw display
$41$ \( T^{6} - 7 T^{5} + \cdots - 32 \) Copy content Toggle raw display
$43$ \( T^{6} + 20 T^{5} + \cdots - 2272 \) Copy content Toggle raw display
$47$ \( T^{6} - 15 T^{5} + \cdots - 1832 \) Copy content Toggle raw display
$53$ \( T^{6} - 8 T^{5} + \cdots + 752 \) Copy content Toggle raw display
$59$ \( T^{6} - 8 T^{5} + \cdots + 8000 \) Copy content Toggle raw display
$61$ \( T^{6} - 25 T^{5} + \cdots + 284 \) Copy content Toggle raw display
$67$ \( T^{6} + 36 T^{5} + \cdots - 7984 \) Copy content Toggle raw display
$71$ \( T^{6} + 14 T^{5} + \cdots + 119528 \) Copy content Toggle raw display
$73$ \( T^{6} + 10 T^{5} + \cdots + 1216 \) Copy content Toggle raw display
$79$ \( T^{6} + 30 T^{5} + \cdots + 684032 \) Copy content Toggle raw display
$83$ \( T^{6} + 37 T^{5} + \cdots - 67768 \) Copy content Toggle raw display
$89$ \( T^{6} - 26 T^{5} + \cdots + 150272 \) Copy content Toggle raw display
$97$ \( T^{6} + 38 T^{5} + \cdots - 109456 \) Copy content Toggle raw display
show more
show less