Properties

Label 2-8967-1.1-c1-0-268
Degree $2$
Conductor $8967$
Sign $1$
Analytic cond. $71.6018$
Root an. cond. $8.46178$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.69·2-s − 3-s + 5.28·4-s + 0.294·5-s − 2.69·6-s + 8.86·8-s + 9-s + 0.795·10-s + 4.64·11-s − 5.28·12-s − 3.49·13-s − 0.294·15-s + 13.3·16-s + 0.238·17-s + 2.69·18-s + 5.04·19-s + 1.55·20-s + 12.5·22-s + 1.01·23-s − 8.86·24-s − 4.91·25-s − 9.43·26-s − 27-s + 2.40·29-s − 0.795·30-s + 2.25·31-s + 18.3·32-s + ⋯
L(s)  = 1  + 1.90·2-s − 0.577·3-s + 2.64·4-s + 0.131·5-s − 1.10·6-s + 3.13·8-s + 0.333·9-s + 0.251·10-s + 1.39·11-s − 1.52·12-s − 0.969·13-s − 0.0760·15-s + 3.34·16-s + 0.0577·17-s + 0.636·18-s + 1.15·19-s + 0.348·20-s + 2.67·22-s + 0.211·23-s − 1.81·24-s − 0.982·25-s − 1.85·26-s − 0.192·27-s + 0.447·29-s − 0.145·30-s + 0.405·31-s + 3.24·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8967 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8967 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8967\)    =    \(3 \cdot 7^{2} \cdot 61\)
Sign: $1$
Analytic conductor: \(71.6018\)
Root analytic conductor: \(8.46178\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8967,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.535909998\)
\(L(\frac12)\) \(\approx\) \(7.535909998\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 \)
61 \( 1 + T \)
good2 \( 1 - 2.69T + 2T^{2} \)
5 \( 1 - 0.294T + 5T^{2} \)
11 \( 1 - 4.64T + 11T^{2} \)
13 \( 1 + 3.49T + 13T^{2} \)
17 \( 1 - 0.238T + 17T^{2} \)
19 \( 1 - 5.04T + 19T^{2} \)
23 \( 1 - 1.01T + 23T^{2} \)
29 \( 1 - 2.40T + 29T^{2} \)
31 \( 1 - 2.25T + 31T^{2} \)
37 \( 1 - 0.441T + 37T^{2} \)
41 \( 1 + 7.90T + 41T^{2} \)
43 \( 1 - 3.71T + 43T^{2} \)
47 \( 1 - 12.0T + 47T^{2} \)
53 \( 1 + 7.61T + 53T^{2} \)
59 \( 1 + 0.784T + 59T^{2} \)
67 \( 1 - 5.33T + 67T^{2} \)
71 \( 1 - 7.47T + 71T^{2} \)
73 \( 1 - 14.0T + 73T^{2} \)
79 \( 1 - 0.254T + 79T^{2} \)
83 \( 1 + 0.717T + 83T^{2} \)
89 \( 1 + 3.56T + 89T^{2} \)
97 \( 1 - 6.21T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.33533461680856022722178590637, −6.70971158570449185927953480476, −6.28118663060340941863734394691, −5.45668647573380899585186369775, −5.06631396929081349265668973133, −4.24656170021408738931532226179, −3.73482212389285925822255682773, −2.88634949024109323411241892855, −2.01074325833242265058562121894, −1.09180922624343499655871746923, 1.09180922624343499655871746923, 2.01074325833242265058562121894, 2.88634949024109323411241892855, 3.73482212389285925822255682773, 4.24656170021408738931532226179, 5.06631396929081349265668973133, 5.45668647573380899585186369775, 6.28118663060340941863734394691, 6.70971158570449185927953480476, 7.33533461680856022722178590637

Graph of the $Z$-function along the critical line