Properties

Label 8967.2.a.bi
Level $8967$
Weight $2$
Character orbit 8967.a
Self dual yes
Analytic conductor $71.602$
Analytic rank $0$
Dimension $19$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8967,2,Mod(1,8967)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8967, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8967.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8967 = 3 \cdot 7^{2} \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8967.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.6018554925\)
Analytic rank: \(0\)
Dimension: \(19\)
Coefficient field: \(\mathbb{Q}[x]/(x^{19} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{19} - 4 x^{18} - 23 x^{17} + 104 x^{16} + 198 x^{15} - 1098 x^{14} - 729 x^{13} + 6066 x^{12} + \cdots + 350 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{18}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - q^{3} + (\beta_{2} + 1) q^{4} + \beta_{7} q^{5} - \beta_1 q^{6} + (\beta_{3} + \beta_1) q^{8} + q^{9} + ( - \beta_{12} - \beta_{11} - \beta_{10} + \cdots - 1) q^{10} - \beta_{9} q^{11}+ \cdots - \beta_{9} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 19 q + 4 q^{2} - 19 q^{3} + 24 q^{4} + 2 q^{5} - 4 q^{6} + 12 q^{8} + 19 q^{9} - 10 q^{10} + 4 q^{11} - 24 q^{12} - 2 q^{15} + 34 q^{16} - 5 q^{17} + 4 q^{18} - 18 q^{19} + 24 q^{20} + 6 q^{22} + 18 q^{23}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{19} - 4 x^{18} - 23 x^{17} + 104 x^{16} + 198 x^{15} - 1098 x^{14} - 729 x^{13} + 6066 x^{12} + \cdots + 350 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 5\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 7\nu^{2} - \nu + 6 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 1572924 \nu^{18} + 34306232 \nu^{17} - 78501240 \nu^{16} - 772233446 \nu^{15} + \cdots - 11127305929 ) / 147463873 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 3623208 \nu^{18} + 32573083 \nu^{17} + 7485634 \nu^{16} - 758336922 \nu^{15} + \cdots - 2060393174 ) / 294927746 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 6918642 \nu^{18} + 53354311 \nu^{17} + 54388112 \nu^{16} - 1271896460 \nu^{15} + \cdots - 9691114386 ) / 294927746 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 13815335 \nu^{18} - 58756055 \nu^{17} - 298190522 \nu^{16} + 1488599610 \nu^{15} + \cdots - 3888741532 ) / 294927746 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 9131134 \nu^{18} - 21388607 \nu^{17} - 261046748 \nu^{16} + 581002205 \nu^{15} + \cdots - 7848553972 ) / 147463873 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 9131134 \nu^{18} - 21388607 \nu^{17} - 261046748 \nu^{16} + 581002205 \nu^{15} + \cdots - 6078987496 ) / 147463873 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 22163555 \nu^{18} + 40529961 \nu^{17} + 689164952 \nu^{16} - 1183859354 \nu^{15} + \cdots + 30740651746 ) / 294927746 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 15921473 \nu^{18} + 114477341 \nu^{17} + 141335934 \nu^{16} - 2704279911 \nu^{15} + \cdots - 25295252865 ) / 147463873 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 39963316 \nu^{18} + 212222293 \nu^{17} + 676001912 \nu^{16} - 5186438520 \nu^{15} + \cdots - 22284733250 ) / 294927746 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 57406263 \nu^{18} + 242420676 \nu^{17} + 1224572230 \nu^{16} - 6070070148 \nu^{15} + \cdots - 6376579286 ) / 294927746 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 61816361 \nu^{18} - 272812290 \nu^{17} - 1268915794 \nu^{16} + 6782684210 \nu^{15} + \cdots + 12463997308 ) / 294927746 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 87363207 \nu^{18} + 425672799 \nu^{17} + 1622698460 \nu^{16} - 10465615152 \nu^{15} + \cdots - 34984506896 ) / 294927746 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 56224582 \nu^{18} + 237589087 \nu^{17} + 1200055354 \nu^{16} - 5956627724 \nu^{15} + \cdots - 3860296965 ) / 147463873 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 56771841 \nu^{18} - 265723817 \nu^{17} - 1111661158 \nu^{16} + 6594745704 \nu^{15} + \cdots + 12414662740 ) / 147463873 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 7\beta_{2} + \beta _1 + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{17} - \beta_{16} - \beta_{14} + \beta_{12} + \beta_{6} - \beta_{5} - \beta_{4} + 11 \beta_{3} + \cdots + 1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{17} - \beta_{16} - \beta_{14} + \beta_{12} - \beta_{10} + \beta_{9} + \beta_{6} - \beta_{5} + \cdots + 88 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 11 \beta_{17} - 12 \beta_{16} - \beta_{15} - 12 \beta_{14} + \beta_{13} + 12 \beta_{12} - \beta_{10} + \cdots + 18 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - \beta_{18} + 13 \beta_{17} - 16 \beta_{16} - 13 \beta_{14} + \beta_{13} + 16 \beta_{12} + \beta_{11} + \cdots + 552 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 2 \beta_{18} + 90 \beta_{17} - 108 \beta_{16} - 16 \beta_{15} - 106 \beta_{14} + 15 \beta_{13} + \cdots + 213 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 21 \beta_{18} + 120 \beta_{17} - 176 \beta_{16} - \beta_{15} - 121 \beta_{14} + 14 \beta_{13} + \cdots + 3590 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 46 \beta_{18} + 662 \beta_{17} - 887 \beta_{16} - 175 \beta_{15} - 839 \beta_{14} + 151 \beta_{13} + \cdots + 2118 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 285 \beta_{18} + 966 \beta_{17} - 1665 \beta_{16} - 31 \beta_{15} - 1001 \beta_{14} + 129 \beta_{13} + \cdots + 23900 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 662 \beta_{18} + 4631 \beta_{17} - 7027 \beta_{16} - 1638 \beta_{15} - 6314 \beta_{14} + 1280 \beta_{13} + \cdots + 19181 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 3177 \beta_{18} + 7242 \beta_{17} - 14584 \beta_{16} - 539 \beta_{15} - 7873 \beta_{14} + \cdots + 161854 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 7684 \beta_{18} + 31510 \beta_{17} - 54787 \beta_{16} - 14165 \beta_{15} - 46285 \beta_{14} + \cdots + 164054 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 31682 \beta_{18} + 52018 \beta_{17} - 122196 \beta_{16} - 7190 \beta_{15} - 60467 \beta_{14} + \cdots + 1111030 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( - 78910 \beta_{18} + 210682 \beta_{17} - 423817 \beta_{16} - 117235 \beta_{15} - 334351 \beta_{14} + \cdots + 1351190 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( - 294471 \beta_{18} + 363040 \beta_{17} - 995885 \beta_{16} - 82489 \beta_{15} - 458763 \beta_{14} + \cdots + 7712550 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.51452
−2.48306
−2.38608
−1.70252
−1.56798
−0.929382
−0.912298
−0.710718
−0.190364
0.642777
0.746083
0.973554
1.22692
1.66531
1.90477
2.18101
2.62196
2.69923
2.73532
−2.51452 −1.00000 4.32283 3.89235 2.51452 0 −5.84082 1.00000 −9.78740
1.2 −2.48306 −1.00000 4.16558 −3.12763 2.48306 0 −5.37727 1.00000 7.76609
1.3 −2.38608 −1.00000 3.69339 3.36735 2.38608 0 −4.04057 1.00000 −8.03478
1.4 −1.70252 −1.00000 0.898581 0.715975 1.70252 0 1.87519 1.00000 −1.21896
1.5 −1.56798 −1.00000 0.458569 1.03695 1.56798 0 2.41694 1.00000 −1.62592
1.6 −0.929382 −1.00000 −1.13625 0.382022 0.929382 0 2.91477 1.00000 −0.355045
1.7 −0.912298 −1.00000 −1.16771 −2.90082 0.912298 0 2.88990 1.00000 2.64641
1.8 −0.710718 −1.00000 −1.49488 −1.85767 0.710718 0 2.48387 1.00000 1.32028
1.9 −0.190364 −1.00000 −1.96376 3.09829 0.190364 0 0.754556 1.00000 −0.589803
1.10 0.642777 −1.00000 −1.58684 −4.23924 −0.642777 0 −2.30554 1.00000 −2.72489
1.11 0.746083 −1.00000 −1.44336 −1.32326 −0.746083 0 −2.56903 1.00000 −0.987265
1.12 0.973554 −1.00000 −1.05219 −0.151186 −0.973554 0 −2.97147 1.00000 −0.147188
1.13 1.22692 −1.00000 −0.494677 3.84235 −1.22692 0 −3.06076 1.00000 4.71425
1.14 1.66531 −1.00000 0.773271 −2.48363 −1.66531 0 −2.04289 1.00000 −4.13602
1.15 1.90477 −1.00000 1.62814 2.77895 −1.90477 0 −0.708301 1.00000 5.29325
1.16 2.18101 −1.00000 2.75681 −2.14822 −2.18101 0 1.65062 1.00000 −4.68530
1.17 2.62196 −1.00000 4.87466 4.35407 −2.62196 0 7.53724 1.00000 11.4162
1.18 2.69923 −1.00000 5.28587 0.294682 −2.69923 0 8.86932 1.00000 0.795416
1.19 2.73532 −1.00000 5.48196 −3.53133 −2.73532 0 9.52425 1.00000 −9.65931
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.19
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)
\(61\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8967.2.a.bi 19
7.b odd 2 1 8967.2.a.bj yes 19
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8967.2.a.bi 19 1.a even 1 1 trivial
8967.2.a.bj yes 19 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8967))\):

\( T_{2}^{19} - 4 T_{2}^{18} - 23 T_{2}^{17} + 104 T_{2}^{16} + 198 T_{2}^{15} - 1098 T_{2}^{14} + \cdots + 350 \) Copy content Toggle raw display
\( T_{5}^{19} - 2 T_{5}^{18} - 70 T_{5}^{17} + 116 T_{5}^{16} + 2050 T_{5}^{15} - 2636 T_{5}^{14} + \cdots + 42496 \) Copy content Toggle raw display
\( T_{11}^{19} - 4 T_{11}^{18} - 129 T_{11}^{17} + 484 T_{11}^{16} + 6947 T_{11}^{15} - 23754 T_{11}^{14} + \cdots + 54995584 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{19} - 4 T^{18} + \cdots + 350 \) Copy content Toggle raw display
$3$ \( (T + 1)^{19} \) Copy content Toggle raw display
$5$ \( T^{19} - 2 T^{18} + \cdots + 42496 \) Copy content Toggle raw display
$7$ \( T^{19} \) Copy content Toggle raw display
$11$ \( T^{19} - 4 T^{18} + \cdots + 54995584 \) Copy content Toggle raw display
$13$ \( T^{19} + \cdots - 1172040192 \) Copy content Toggle raw display
$17$ \( T^{19} + 5 T^{18} + \cdots + 26322016 \) Copy content Toggle raw display
$19$ \( T^{19} + 18 T^{18} + \cdots - 5748832 \) Copy content Toggle raw display
$23$ \( T^{19} + \cdots + 7070726464 \) Copy content Toggle raw display
$29$ \( T^{19} + \cdots + 3763435480 \) Copy content Toggle raw display
$31$ \( T^{19} + 29 T^{18} + \cdots - 8552448 \) Copy content Toggle raw display
$37$ \( T^{19} + \cdots - 138414080 \) Copy content Toggle raw display
$41$ \( T^{19} + \cdots + 1101803724800 \) Copy content Toggle raw display
$43$ \( T^{19} + \cdots + 1419275638784 \) Copy content Toggle raw display
$47$ \( T^{19} + \cdots - 3691678269440 \) Copy content Toggle raw display
$53$ \( T^{19} + \cdots - 9760985488 \) Copy content Toggle raw display
$59$ \( T^{19} + \cdots - 9015770244868 \) Copy content Toggle raw display
$61$ \( (T + 1)^{19} \) Copy content Toggle raw display
$67$ \( T^{19} + \cdots - 973469113286656 \) Copy content Toggle raw display
$71$ \( T^{19} + \cdots - 32922172686400 \) Copy content Toggle raw display
$73$ \( T^{19} + \cdots + 231639423123456 \) Copy content Toggle raw display
$79$ \( T^{19} + \cdots - 4061839970304 \) Copy content Toggle raw display
$83$ \( T^{19} + \cdots + 428202786816 \) Copy content Toggle raw display
$89$ \( T^{19} + \cdots + 171635482664960 \) Copy content Toggle raw display
$97$ \( T^{19} + \cdots + 893809767974400 \) Copy content Toggle raw display
show more
show less