Properties

Label 2-8967-1.1-c1-0-68
Degree $2$
Conductor $8967$
Sign $1$
Analytic cond. $71.6018$
Root an. cond. $8.46178$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.70·2-s − 3-s + 0.898·4-s + 0.715·5-s + 1.70·6-s + 1.87·8-s + 9-s − 1.21·10-s + 5.02·11-s − 0.898·12-s + 0.797·13-s − 0.715·15-s − 4.98·16-s − 7.91·17-s − 1.70·18-s − 1.11·19-s + 0.643·20-s − 8.55·22-s + 5.76·23-s − 1.87·24-s − 4.48·25-s − 1.35·26-s − 27-s − 6.92·29-s + 1.21·30-s + 0.0330·31-s + 4.74·32-s + ⋯
L(s)  = 1  − 1.20·2-s − 0.577·3-s + 0.449·4-s + 0.320·5-s + 0.695·6-s + 0.662·8-s + 0.333·9-s − 0.385·10-s + 1.51·11-s − 0.259·12-s + 0.221·13-s − 0.184·15-s − 1.24·16-s − 1.92·17-s − 0.401·18-s − 0.254·19-s + 0.143·20-s − 1.82·22-s + 1.20·23-s − 0.382·24-s − 0.897·25-s − 0.266·26-s − 0.192·27-s − 1.28·29-s + 0.222·30-s + 0.00594·31-s + 0.838·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8967 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8967 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8967\)    =    \(3 \cdot 7^{2} \cdot 61\)
Sign: $1$
Analytic conductor: \(71.6018\)
Root analytic conductor: \(8.46178\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8967,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7057766569\)
\(L(\frac12)\) \(\approx\) \(0.7057766569\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 \)
61 \( 1 + T \)
good2 \( 1 + 1.70T + 2T^{2} \)
5 \( 1 - 0.715T + 5T^{2} \)
11 \( 1 - 5.02T + 11T^{2} \)
13 \( 1 - 0.797T + 13T^{2} \)
17 \( 1 + 7.91T + 17T^{2} \)
19 \( 1 + 1.11T + 19T^{2} \)
23 \( 1 - 5.76T + 23T^{2} \)
29 \( 1 + 6.92T + 29T^{2} \)
31 \( 1 - 0.0330T + 31T^{2} \)
37 \( 1 - 9.85T + 37T^{2} \)
41 \( 1 + 8.44T + 41T^{2} \)
43 \( 1 + 4.57T + 43T^{2} \)
47 \( 1 + 5.76T + 47T^{2} \)
53 \( 1 + 6.14T + 53T^{2} \)
59 \( 1 - 0.612T + 59T^{2} \)
67 \( 1 - 7.19T + 67T^{2} \)
71 \( 1 - 12.6T + 71T^{2} \)
73 \( 1 + 14.3T + 73T^{2} \)
79 \( 1 - 5.69T + 79T^{2} \)
83 \( 1 - 8.11T + 83T^{2} \)
89 \( 1 + 4.96T + 89T^{2} \)
97 \( 1 - 8.89T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85757789033059598500848121602, −6.91350649482987968644318578062, −6.65702025225042945526101181917, −5.94601830946868370703644324317, −4.87674320302213941102569936467, −4.35059547827391528276701757370, −3.53030939958183288141106617707, −2.10148243792373262486757721540, −1.56539036001975274112207443122, −0.52613868173688425076075773443, 0.52613868173688425076075773443, 1.56539036001975274112207443122, 2.10148243792373262486757721540, 3.53030939958183288141106617707, 4.35059547827391528276701757370, 4.87674320302213941102569936467, 5.94601830946868370703644324317, 6.65702025225042945526101181917, 6.91350649482987968644318578062, 7.85757789033059598500848121602

Graph of the $Z$-function along the critical line