Properties

Label 8967.2.a.bi.1.4
Level $8967$
Weight $2$
Character 8967.1
Self dual yes
Analytic conductor $71.602$
Analytic rank $0$
Dimension $19$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8967,2,Mod(1,8967)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8967, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8967.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8967 = 3 \cdot 7^{2} \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8967.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.6018554925\)
Analytic rank: \(0\)
Dimension: \(19\)
Coefficient field: \(\mathbb{Q}[x]/(x^{19} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{19} - 4 x^{18} - 23 x^{17} + 104 x^{16} + 198 x^{15} - 1098 x^{14} - 729 x^{13} + 6066 x^{12} + \cdots + 350 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.70252\) of defining polynomial
Character \(\chi\) \(=\) 8967.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.70252 q^{2} -1.00000 q^{3} +0.898581 q^{4} +0.715975 q^{5} +1.70252 q^{6} +1.87519 q^{8} +1.00000 q^{9} -1.21896 q^{10} +5.02281 q^{11} -0.898581 q^{12} +0.797072 q^{13} -0.715975 q^{15} -4.98971 q^{16} -7.91925 q^{17} -1.70252 q^{18} -1.11057 q^{19} +0.643361 q^{20} -8.55145 q^{22} +5.76080 q^{23} -1.87519 q^{24} -4.48738 q^{25} -1.35703 q^{26} -1.00000 q^{27} -6.92066 q^{29} +1.21896 q^{30} +0.0330926 q^{31} +4.74472 q^{32} -5.02281 q^{33} +13.4827 q^{34} +0.898581 q^{36} +9.85357 q^{37} +1.89077 q^{38} -0.797072 q^{39} +1.34259 q^{40} -8.44884 q^{41} -4.57304 q^{43} +4.51340 q^{44} +0.715975 q^{45} -9.80790 q^{46} -5.76215 q^{47} +4.98971 q^{48} +7.63986 q^{50} +7.91925 q^{51} +0.716234 q^{52} -6.14590 q^{53} +1.70252 q^{54} +3.59621 q^{55} +1.11057 q^{57} +11.7826 q^{58} +0.612378 q^{59} -0.643361 q^{60} -1.00000 q^{61} -0.0563409 q^{62} +1.90144 q^{64} +0.570683 q^{65} +8.55145 q^{66} +7.19225 q^{67} -7.11609 q^{68} -5.76080 q^{69} +12.6813 q^{71} +1.87519 q^{72} -14.3106 q^{73} -16.7759 q^{74} +4.48738 q^{75} -0.997939 q^{76} +1.35703 q^{78} +5.69237 q^{79} -3.57251 q^{80} +1.00000 q^{81} +14.3843 q^{82} +8.11052 q^{83} -5.66999 q^{85} +7.78570 q^{86} +6.92066 q^{87} +9.41873 q^{88} -4.96719 q^{89} -1.21896 q^{90} +5.17655 q^{92} -0.0330926 q^{93} +9.81018 q^{94} -0.795141 q^{95} -4.74472 q^{96} +8.89123 q^{97} +5.02281 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 19 q + 4 q^{2} - 19 q^{3} + 24 q^{4} + 2 q^{5} - 4 q^{6} + 12 q^{8} + 19 q^{9} - 10 q^{10} + 4 q^{11} - 24 q^{12} - 2 q^{15} + 34 q^{16} - 5 q^{17} + 4 q^{18} - 18 q^{19} + 24 q^{20} + 6 q^{22} + 18 q^{23}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.70252 −1.20386 −0.601932 0.798547i \(-0.705602\pi\)
−0.601932 + 0.798547i \(0.705602\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.898581 0.449290
\(5\) 0.715975 0.320194 0.160097 0.987101i \(-0.448819\pi\)
0.160097 + 0.987101i \(0.448819\pi\)
\(6\) 1.70252 0.695052
\(7\) 0 0
\(8\) 1.87519 0.662980
\(9\) 1.00000 0.333333
\(10\) −1.21896 −0.385470
\(11\) 5.02281 1.51443 0.757217 0.653163i \(-0.226558\pi\)
0.757217 + 0.653163i \(0.226558\pi\)
\(12\) −0.898581 −0.259398
\(13\) 0.797072 0.221068 0.110534 0.993872i \(-0.464744\pi\)
0.110534 + 0.993872i \(0.464744\pi\)
\(14\) 0 0
\(15\) −0.715975 −0.184864
\(16\) −4.98971 −1.24743
\(17\) −7.91925 −1.92070 −0.960351 0.278795i \(-0.910065\pi\)
−0.960351 + 0.278795i \(0.910065\pi\)
\(18\) −1.70252 −0.401288
\(19\) −1.11057 −0.254783 −0.127391 0.991853i \(-0.540660\pi\)
−0.127391 + 0.991853i \(0.540660\pi\)
\(20\) 0.643361 0.143860
\(21\) 0 0
\(22\) −8.55145 −1.82317
\(23\) 5.76080 1.20121 0.600605 0.799546i \(-0.294926\pi\)
0.600605 + 0.799546i \(0.294926\pi\)
\(24\) −1.87519 −0.382772
\(25\) −4.48738 −0.897476
\(26\) −1.35703 −0.266136
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −6.92066 −1.28513 −0.642567 0.766230i \(-0.722130\pi\)
−0.642567 + 0.766230i \(0.722130\pi\)
\(30\) 1.21896 0.222551
\(31\) 0.0330926 0.00594361 0.00297181 0.999996i \(-0.499054\pi\)
0.00297181 + 0.999996i \(0.499054\pi\)
\(32\) 4.74472 0.838755
\(33\) −5.02281 −0.874359
\(34\) 13.4827 2.31226
\(35\) 0 0
\(36\) 0.898581 0.149763
\(37\) 9.85357 1.61992 0.809959 0.586487i \(-0.199489\pi\)
0.809959 + 0.586487i \(0.199489\pi\)
\(38\) 1.89077 0.306724
\(39\) −0.797072 −0.127634
\(40\) 1.34259 0.212282
\(41\) −8.44884 −1.31949 −0.659744 0.751491i \(-0.729335\pi\)
−0.659744 + 0.751491i \(0.729335\pi\)
\(42\) 0 0
\(43\) −4.57304 −0.697382 −0.348691 0.937238i \(-0.613374\pi\)
−0.348691 + 0.937238i \(0.613374\pi\)
\(44\) 4.51340 0.680421
\(45\) 0.715975 0.106731
\(46\) −9.80790 −1.44610
\(47\) −5.76215 −0.840495 −0.420248 0.907409i \(-0.638057\pi\)
−0.420248 + 0.907409i \(0.638057\pi\)
\(48\) 4.98971 0.720203
\(49\) 0 0
\(50\) 7.63986 1.08044
\(51\) 7.91925 1.10892
\(52\) 0.716234 0.0993237
\(53\) −6.14590 −0.844205 −0.422102 0.906548i \(-0.638708\pi\)
−0.422102 + 0.906548i \(0.638708\pi\)
\(54\) 1.70252 0.231684
\(55\) 3.59621 0.484912
\(56\) 0 0
\(57\) 1.11057 0.147099
\(58\) 11.7826 1.54713
\(59\) 0.612378 0.0797248 0.0398624 0.999205i \(-0.487308\pi\)
0.0398624 + 0.999205i \(0.487308\pi\)
\(60\) −0.643361 −0.0830576
\(61\) −1.00000 −0.128037
\(62\) −0.0563409 −0.00715531
\(63\) 0 0
\(64\) 1.90144 0.237680
\(65\) 0.570683 0.0707846
\(66\) 8.55145 1.05261
\(67\) 7.19225 0.878673 0.439337 0.898323i \(-0.355214\pi\)
0.439337 + 0.898323i \(0.355214\pi\)
\(68\) −7.11609 −0.862953
\(69\) −5.76080 −0.693519
\(70\) 0 0
\(71\) 12.6813 1.50499 0.752496 0.658597i \(-0.228850\pi\)
0.752496 + 0.658597i \(0.228850\pi\)
\(72\) 1.87519 0.220993
\(73\) −14.3106 −1.67493 −0.837465 0.546491i \(-0.815963\pi\)
−0.837465 + 0.546491i \(0.815963\pi\)
\(74\) −16.7759 −1.95016
\(75\) 4.48738 0.518158
\(76\) −0.997939 −0.114471
\(77\) 0 0
\(78\) 1.35703 0.153654
\(79\) 5.69237 0.640441 0.320221 0.947343i \(-0.396243\pi\)
0.320221 + 0.947343i \(0.396243\pi\)
\(80\) −3.57251 −0.399419
\(81\) 1.00000 0.111111
\(82\) 14.3843 1.58848
\(83\) 8.11052 0.890245 0.445123 0.895470i \(-0.353160\pi\)
0.445123 + 0.895470i \(0.353160\pi\)
\(84\) 0 0
\(85\) −5.66999 −0.614996
\(86\) 7.78570 0.839554
\(87\) 6.92066 0.741972
\(88\) 9.41873 1.00404
\(89\) −4.96719 −0.526521 −0.263261 0.964725i \(-0.584798\pi\)
−0.263261 + 0.964725i \(0.584798\pi\)
\(90\) −1.21896 −0.128490
\(91\) 0 0
\(92\) 5.17655 0.539692
\(93\) −0.0330926 −0.00343155
\(94\) 9.81018 1.01184
\(95\) −0.795141 −0.0815798
\(96\) −4.74472 −0.484256
\(97\) 8.89123 0.902767 0.451384 0.892330i \(-0.350931\pi\)
0.451384 + 0.892330i \(0.350931\pi\)
\(98\) 0 0
\(99\) 5.02281 0.504812
\(100\) −4.03227 −0.403227
\(101\) 2.34654 0.233490 0.116745 0.993162i \(-0.462754\pi\)
0.116745 + 0.993162i \(0.462754\pi\)
\(102\) −13.4827 −1.33499
\(103\) 9.64415 0.950266 0.475133 0.879914i \(-0.342400\pi\)
0.475133 + 0.879914i \(0.342400\pi\)
\(104\) 1.49466 0.146564
\(105\) 0 0
\(106\) 10.4635 1.01631
\(107\) 11.3426 1.09653 0.548267 0.836303i \(-0.315288\pi\)
0.548267 + 0.836303i \(0.315288\pi\)
\(108\) −0.898581 −0.0864660
\(109\) −3.61005 −0.345780 −0.172890 0.984941i \(-0.555310\pi\)
−0.172890 + 0.984941i \(0.555310\pi\)
\(110\) −6.12262 −0.583769
\(111\) −9.85357 −0.935260
\(112\) 0 0
\(113\) −2.12570 −0.199969 −0.0999843 0.994989i \(-0.531879\pi\)
−0.0999843 + 0.994989i \(0.531879\pi\)
\(114\) −1.89077 −0.177087
\(115\) 4.12459 0.384620
\(116\) −6.21877 −0.577398
\(117\) 0.797072 0.0736893
\(118\) −1.04259 −0.0959778
\(119\) 0 0
\(120\) −1.34259 −0.122561
\(121\) 14.2286 1.29351
\(122\) 1.70252 0.154139
\(123\) 8.44884 0.761806
\(124\) 0.0297364 0.00267041
\(125\) −6.79272 −0.607560
\(126\) 0 0
\(127\) −0.110580 −0.00981240 −0.00490620 0.999988i \(-0.501562\pi\)
−0.00490620 + 0.999988i \(0.501562\pi\)
\(128\) −12.7267 −1.12489
\(129\) 4.57304 0.402634
\(130\) −0.971601 −0.0852150
\(131\) 16.3331 1.42703 0.713514 0.700641i \(-0.247103\pi\)
0.713514 + 0.700641i \(0.247103\pi\)
\(132\) −4.51340 −0.392841
\(133\) 0 0
\(134\) −12.2450 −1.05780
\(135\) −0.715975 −0.0616213
\(136\) −14.8501 −1.27339
\(137\) 2.13706 0.182582 0.0912909 0.995824i \(-0.470901\pi\)
0.0912909 + 0.995824i \(0.470901\pi\)
\(138\) 9.80790 0.834903
\(139\) −3.49893 −0.296775 −0.148388 0.988929i \(-0.547408\pi\)
−0.148388 + 0.988929i \(0.547408\pi\)
\(140\) 0 0
\(141\) 5.76215 0.485260
\(142\) −21.5902 −1.81181
\(143\) 4.00354 0.334793
\(144\) −4.98971 −0.415810
\(145\) −4.95501 −0.411492
\(146\) 24.3641 2.01639
\(147\) 0 0
\(148\) 8.85423 0.727813
\(149\) 11.3975 0.933718 0.466859 0.884332i \(-0.345386\pi\)
0.466859 + 0.884332i \(0.345386\pi\)
\(150\) −7.63986 −0.623792
\(151\) 5.93538 0.483014 0.241507 0.970399i \(-0.422358\pi\)
0.241507 + 0.970399i \(0.422358\pi\)
\(152\) −2.08253 −0.168916
\(153\) −7.91925 −0.640234
\(154\) 0 0
\(155\) 0.0236935 0.00190311
\(156\) −0.716234 −0.0573446
\(157\) 8.17089 0.652108 0.326054 0.945351i \(-0.394281\pi\)
0.326054 + 0.945351i \(0.394281\pi\)
\(158\) −9.69138 −0.771005
\(159\) 6.14590 0.487402
\(160\) 3.39710 0.268564
\(161\) 0 0
\(162\) −1.70252 −0.133763
\(163\) −0.316974 −0.0248273 −0.0124136 0.999923i \(-0.503951\pi\)
−0.0124136 + 0.999923i \(0.503951\pi\)
\(164\) −7.59197 −0.592833
\(165\) −3.59621 −0.279964
\(166\) −13.8083 −1.07173
\(167\) 17.8139 1.37848 0.689241 0.724532i \(-0.257944\pi\)
0.689241 + 0.724532i \(0.257944\pi\)
\(168\) 0 0
\(169\) −12.3647 −0.951129
\(170\) 9.65328 0.740372
\(171\) −1.11057 −0.0849275
\(172\) −4.10925 −0.313327
\(173\) 22.5077 1.71123 0.855613 0.517616i \(-0.173180\pi\)
0.855613 + 0.517616i \(0.173180\pi\)
\(174\) −11.7826 −0.893234
\(175\) 0 0
\(176\) −25.0624 −1.88915
\(177\) −0.612378 −0.0460291
\(178\) 8.45675 0.633860
\(179\) −3.34758 −0.250210 −0.125105 0.992144i \(-0.539927\pi\)
−0.125105 + 0.992144i \(0.539927\pi\)
\(180\) 0.643361 0.0479533
\(181\) 12.2063 0.907286 0.453643 0.891183i \(-0.350124\pi\)
0.453643 + 0.891183i \(0.350124\pi\)
\(182\) 0 0
\(183\) 1.00000 0.0739221
\(184\) 10.8026 0.796378
\(185\) 7.05491 0.518687
\(186\) 0.0563409 0.00413112
\(187\) −39.7769 −2.90878
\(188\) −5.17775 −0.377627
\(189\) 0 0
\(190\) 1.35375 0.0982110
\(191\) −2.91525 −0.210940 −0.105470 0.994422i \(-0.533635\pi\)
−0.105470 + 0.994422i \(0.533635\pi\)
\(192\) −1.90144 −0.137225
\(193\) −16.4879 −1.18682 −0.593411 0.804900i \(-0.702219\pi\)
−0.593411 + 0.804900i \(0.702219\pi\)
\(194\) −15.1375 −1.08681
\(195\) −0.570683 −0.0408675
\(196\) 0 0
\(197\) −3.08933 −0.220106 −0.110053 0.993926i \(-0.535102\pi\)
−0.110053 + 0.993926i \(0.535102\pi\)
\(198\) −8.55145 −0.607725
\(199\) −3.32564 −0.235748 −0.117874 0.993029i \(-0.537608\pi\)
−0.117874 + 0.993029i \(0.537608\pi\)
\(200\) −8.41469 −0.595009
\(201\) −7.19225 −0.507302
\(202\) −3.99504 −0.281090
\(203\) 0 0
\(204\) 7.11609 0.498226
\(205\) −6.04916 −0.422491
\(206\) −16.4194 −1.14399
\(207\) 5.76080 0.400404
\(208\) −3.97716 −0.275767
\(209\) −5.57819 −0.385852
\(210\) 0 0
\(211\) 5.28003 0.363492 0.181746 0.983345i \(-0.441825\pi\)
0.181746 + 0.983345i \(0.441825\pi\)
\(212\) −5.52259 −0.379293
\(213\) −12.6813 −0.868907
\(214\) −19.3111 −1.32008
\(215\) −3.27418 −0.223297
\(216\) −1.87519 −0.127591
\(217\) 0 0
\(218\) 6.14618 0.416272
\(219\) 14.3106 0.967021
\(220\) 3.23148 0.217866
\(221\) −6.31222 −0.424606
\(222\) 16.7759 1.12593
\(223\) −5.64363 −0.377925 −0.188963 0.981984i \(-0.560512\pi\)
−0.188963 + 0.981984i \(0.560512\pi\)
\(224\) 0 0
\(225\) −4.48738 −0.299159
\(226\) 3.61904 0.240735
\(227\) 24.6696 1.63738 0.818688 0.574238i \(-0.194702\pi\)
0.818688 + 0.574238i \(0.194702\pi\)
\(228\) 0.997939 0.0660901
\(229\) −17.4454 −1.15283 −0.576413 0.817158i \(-0.695548\pi\)
−0.576413 + 0.817158i \(0.695548\pi\)
\(230\) −7.02220 −0.463030
\(231\) 0 0
\(232\) −12.9775 −0.852018
\(233\) −12.0618 −0.790196 −0.395098 0.918639i \(-0.629289\pi\)
−0.395098 + 0.918639i \(0.629289\pi\)
\(234\) −1.35703 −0.0887120
\(235\) −4.12555 −0.269121
\(236\) 0.550271 0.0358196
\(237\) −5.69237 −0.369759
\(238\) 0 0
\(239\) 2.43011 0.157191 0.0785953 0.996907i \(-0.474957\pi\)
0.0785953 + 0.996907i \(0.474957\pi\)
\(240\) 3.57251 0.230604
\(241\) −17.1573 −1.10520 −0.552598 0.833448i \(-0.686364\pi\)
−0.552598 + 0.833448i \(0.686364\pi\)
\(242\) −24.2246 −1.55721
\(243\) −1.00000 −0.0641500
\(244\) −0.898581 −0.0575257
\(245\) 0 0
\(246\) −14.3843 −0.917112
\(247\) −0.885206 −0.0563243
\(248\) 0.0620550 0.00394049
\(249\) −8.11052 −0.513983
\(250\) 11.5648 0.731420
\(251\) −14.5612 −0.919097 −0.459548 0.888153i \(-0.651989\pi\)
−0.459548 + 0.888153i \(0.651989\pi\)
\(252\) 0 0
\(253\) 28.9354 1.81916
\(254\) 0.188265 0.0118128
\(255\) 5.66999 0.355068
\(256\) 17.8646 1.11654
\(257\) 11.2133 0.699467 0.349734 0.936849i \(-0.386272\pi\)
0.349734 + 0.936849i \(0.386272\pi\)
\(258\) −7.78570 −0.484716
\(259\) 0 0
\(260\) 0.512805 0.0318028
\(261\) −6.92066 −0.428378
\(262\) −27.8074 −1.71795
\(263\) −24.6102 −1.51753 −0.758765 0.651365i \(-0.774197\pi\)
−0.758765 + 0.651365i \(0.774197\pi\)
\(264\) −9.41873 −0.579683
\(265\) −4.40031 −0.270309
\(266\) 0 0
\(267\) 4.96719 0.303987
\(268\) 6.46282 0.394779
\(269\) 18.5064 1.12835 0.564177 0.825654i \(-0.309194\pi\)
0.564177 + 0.825654i \(0.309194\pi\)
\(270\) 1.21896 0.0741837
\(271\) −22.8306 −1.38686 −0.693431 0.720523i \(-0.743902\pi\)
−0.693431 + 0.720523i \(0.743902\pi\)
\(272\) 39.5148 2.39594
\(273\) 0 0
\(274\) −3.63840 −0.219804
\(275\) −22.5393 −1.35917
\(276\) −5.17655 −0.311592
\(277\) −14.3030 −0.859387 −0.429693 0.902975i \(-0.641378\pi\)
−0.429693 + 0.902975i \(0.641378\pi\)
\(278\) 5.95701 0.357277
\(279\) 0.0330926 0.00198120
\(280\) 0 0
\(281\) 2.93959 0.175361 0.0876807 0.996149i \(-0.472054\pi\)
0.0876807 + 0.996149i \(0.472054\pi\)
\(282\) −9.81018 −0.584188
\(283\) −7.11484 −0.422934 −0.211467 0.977385i \(-0.567824\pi\)
−0.211467 + 0.977385i \(0.567824\pi\)
\(284\) 11.3952 0.676178
\(285\) 0.795141 0.0471001
\(286\) −6.81612 −0.403046
\(287\) 0 0
\(288\) 4.74472 0.279585
\(289\) 45.7146 2.68909
\(290\) 8.43602 0.495380
\(291\) −8.89123 −0.521213
\(292\) −12.8592 −0.752530
\(293\) −4.10621 −0.239887 −0.119944 0.992781i \(-0.538271\pi\)
−0.119944 + 0.992781i \(0.538271\pi\)
\(294\) 0 0
\(295\) 0.438447 0.0255274
\(296\) 18.4773 1.07397
\(297\) −5.02281 −0.291453
\(298\) −19.4045 −1.12407
\(299\) 4.59178 0.265549
\(300\) 4.03227 0.232803
\(301\) 0 0
\(302\) −10.1051 −0.581484
\(303\) −2.34654 −0.134805
\(304\) 5.54144 0.317823
\(305\) −0.715975 −0.0409966
\(306\) 13.4827 0.770755
\(307\) 23.2377 1.32624 0.663122 0.748512i \(-0.269231\pi\)
0.663122 + 0.748512i \(0.269231\pi\)
\(308\) 0 0
\(309\) −9.64415 −0.548636
\(310\) −0.0403387 −0.00229108
\(311\) 27.2896 1.54745 0.773726 0.633521i \(-0.218391\pi\)
0.773726 + 0.633521i \(0.218391\pi\)
\(312\) −1.49466 −0.0846186
\(313\) −10.4593 −0.591195 −0.295597 0.955313i \(-0.595519\pi\)
−0.295597 + 0.955313i \(0.595519\pi\)
\(314\) −13.9111 −0.785050
\(315\) 0 0
\(316\) 5.11505 0.287744
\(317\) 10.5615 0.593194 0.296597 0.955003i \(-0.404148\pi\)
0.296597 + 0.955003i \(0.404148\pi\)
\(318\) −10.4635 −0.586766
\(319\) −34.7612 −1.94625
\(320\) 1.36138 0.0761037
\(321\) −11.3426 −0.633085
\(322\) 0 0
\(323\) 8.79490 0.489361
\(324\) 0.898581 0.0499212
\(325\) −3.57677 −0.198403
\(326\) 0.539654 0.0298887
\(327\) 3.61005 0.199636
\(328\) −15.8432 −0.874794
\(329\) 0 0
\(330\) 6.12262 0.337039
\(331\) 15.3791 0.845313 0.422657 0.906290i \(-0.361098\pi\)
0.422657 + 0.906290i \(0.361098\pi\)
\(332\) 7.28796 0.399979
\(333\) 9.85357 0.539973
\(334\) −30.3286 −1.65951
\(335\) 5.14947 0.281346
\(336\) 0 0
\(337\) −3.11038 −0.169433 −0.0847167 0.996405i \(-0.526999\pi\)
−0.0847167 + 0.996405i \(0.526999\pi\)
\(338\) 21.0511 1.14503
\(339\) 2.12570 0.115452
\(340\) −5.09494 −0.276312
\(341\) 0.166218 0.00900121
\(342\) 1.89077 0.102241
\(343\) 0 0
\(344\) −8.57532 −0.462350
\(345\) −4.12459 −0.222060
\(346\) −38.3198 −2.06008
\(347\) 29.8835 1.60423 0.802116 0.597168i \(-0.203707\pi\)
0.802116 + 0.597168i \(0.203707\pi\)
\(348\) 6.21877 0.333361
\(349\) 26.3186 1.40880 0.704400 0.709803i \(-0.251216\pi\)
0.704400 + 0.709803i \(0.251216\pi\)
\(350\) 0 0
\(351\) −0.797072 −0.0425446
\(352\) 23.8318 1.27024
\(353\) −30.9112 −1.64524 −0.822619 0.568594i \(-0.807488\pi\)
−0.822619 + 0.568594i \(0.807488\pi\)
\(354\) 1.04259 0.0554128
\(355\) 9.07948 0.481889
\(356\) −4.46342 −0.236561
\(357\) 0 0
\(358\) 5.69932 0.301219
\(359\) 9.08987 0.479745 0.239872 0.970804i \(-0.422894\pi\)
0.239872 + 0.970804i \(0.422894\pi\)
\(360\) 1.34259 0.0707606
\(361\) −17.7666 −0.935086
\(362\) −20.7815 −1.09225
\(363\) −14.2286 −0.746810
\(364\) 0 0
\(365\) −10.2460 −0.536302
\(366\) −1.70252 −0.0889922
\(367\) −21.3134 −1.11255 −0.556275 0.830998i \(-0.687770\pi\)
−0.556275 + 0.830998i \(0.687770\pi\)
\(368\) −28.7448 −1.49842
\(369\) −8.44884 −0.439829
\(370\) −12.0111 −0.624429
\(371\) 0 0
\(372\) −0.0297364 −0.00154176
\(373\) 11.5896 0.600088 0.300044 0.953925i \(-0.402999\pi\)
0.300044 + 0.953925i \(0.402999\pi\)
\(374\) 67.7211 3.50177
\(375\) 6.79272 0.350775
\(376\) −10.8051 −0.557231
\(377\) −5.51626 −0.284102
\(378\) 0 0
\(379\) −12.0906 −0.621052 −0.310526 0.950565i \(-0.600505\pi\)
−0.310526 + 0.950565i \(0.600505\pi\)
\(380\) −0.714499 −0.0366530
\(381\) 0.110580 0.00566519
\(382\) 4.96328 0.253943
\(383\) 11.2910 0.576945 0.288472 0.957488i \(-0.406853\pi\)
0.288472 + 0.957488i \(0.406853\pi\)
\(384\) 12.7267 0.649456
\(385\) 0 0
\(386\) 28.0709 1.42877
\(387\) −4.57304 −0.232461
\(388\) 7.98949 0.405605
\(389\) 27.7403 1.40649 0.703244 0.710949i \(-0.251734\pi\)
0.703244 + 0.710949i \(0.251734\pi\)
\(390\) 0.971601 0.0491989
\(391\) −45.6213 −2.30717
\(392\) 0 0
\(393\) −16.3331 −0.823895
\(394\) 5.25965 0.264977
\(395\) 4.07559 0.205065
\(396\) 4.51340 0.226807
\(397\) 34.8643 1.74979 0.874895 0.484312i \(-0.160930\pi\)
0.874895 + 0.484312i \(0.160930\pi\)
\(398\) 5.66197 0.283809
\(399\) 0 0
\(400\) 22.3907 1.11954
\(401\) 28.0508 1.40079 0.700394 0.713757i \(-0.253008\pi\)
0.700394 + 0.713757i \(0.253008\pi\)
\(402\) 12.2450 0.610723
\(403\) 0.0263772 0.00131394
\(404\) 2.10856 0.104905
\(405\) 0.715975 0.0355771
\(406\) 0 0
\(407\) 49.4926 2.45326
\(408\) 14.8501 0.735190
\(409\) −14.5900 −0.721430 −0.360715 0.932676i \(-0.617467\pi\)
−0.360715 + 0.932676i \(0.617467\pi\)
\(410\) 10.2988 0.508623
\(411\) −2.13706 −0.105414
\(412\) 8.66605 0.426945
\(413\) 0 0
\(414\) −9.80790 −0.482032
\(415\) 5.80693 0.285051
\(416\) 3.78188 0.185422
\(417\) 3.49893 0.171343
\(418\) 9.49700 0.464513
\(419\) −22.6052 −1.10434 −0.552168 0.833733i \(-0.686199\pi\)
−0.552168 + 0.833733i \(0.686199\pi\)
\(420\) 0 0
\(421\) −22.6932 −1.10600 −0.553000 0.833181i \(-0.686517\pi\)
−0.553000 + 0.833181i \(0.686517\pi\)
\(422\) −8.98936 −0.437595
\(423\) −5.76215 −0.280165
\(424\) −11.5247 −0.559691
\(425\) 35.5367 1.72378
\(426\) 21.5902 1.04605
\(427\) 0 0
\(428\) 10.1923 0.492663
\(429\) −4.00354 −0.193293
\(430\) 5.57436 0.268820
\(431\) 15.4307 0.743272 0.371636 0.928379i \(-0.378797\pi\)
0.371636 + 0.928379i \(0.378797\pi\)
\(432\) 4.98971 0.240068
\(433\) 27.6596 1.32924 0.664618 0.747183i \(-0.268594\pi\)
0.664618 + 0.747183i \(0.268594\pi\)
\(434\) 0 0
\(435\) 4.95501 0.237575
\(436\) −3.24392 −0.155356
\(437\) −6.39779 −0.306048
\(438\) −24.3641 −1.16416
\(439\) 0.302563 0.0144405 0.00722026 0.999974i \(-0.497702\pi\)
0.00722026 + 0.999974i \(0.497702\pi\)
\(440\) 6.74357 0.321487
\(441\) 0 0
\(442\) 10.7467 0.511168
\(443\) 15.5661 0.739568 0.369784 0.929118i \(-0.379432\pi\)
0.369784 + 0.929118i \(0.379432\pi\)
\(444\) −8.85423 −0.420203
\(445\) −3.55638 −0.168589
\(446\) 9.60840 0.454971
\(447\) −11.3975 −0.539082
\(448\) 0 0
\(449\) 11.3581 0.536023 0.268011 0.963416i \(-0.413634\pi\)
0.268011 + 0.963416i \(0.413634\pi\)
\(450\) 7.63986 0.360147
\(451\) −42.4369 −1.99828
\(452\) −1.91011 −0.0898440
\(453\) −5.93538 −0.278868
\(454\) −42.0005 −1.97118
\(455\) 0 0
\(456\) 2.08253 0.0975236
\(457\) 40.3117 1.88570 0.942850 0.333218i \(-0.108134\pi\)
0.942850 + 0.333218i \(0.108134\pi\)
\(458\) 29.7012 1.38785
\(459\) 7.91925 0.369639
\(460\) 3.70628 0.172806
\(461\) −3.03620 −0.141410 −0.0707050 0.997497i \(-0.522525\pi\)
−0.0707050 + 0.997497i \(0.522525\pi\)
\(462\) 0 0
\(463\) 18.5030 0.859906 0.429953 0.902851i \(-0.358530\pi\)
0.429953 + 0.902851i \(0.358530\pi\)
\(464\) 34.5321 1.60311
\(465\) −0.0236935 −0.00109876
\(466\) 20.5355 0.951289
\(467\) 8.89364 0.411549 0.205774 0.978599i \(-0.434029\pi\)
0.205774 + 0.978599i \(0.434029\pi\)
\(468\) 0.716234 0.0331079
\(469\) 0 0
\(470\) 7.02384 0.323986
\(471\) −8.17089 −0.376495
\(472\) 1.14832 0.0528559
\(473\) −22.9695 −1.05614
\(474\) 9.69138 0.445140
\(475\) 4.98356 0.228661
\(476\) 0 0
\(477\) −6.14590 −0.281402
\(478\) −4.13731 −0.189236
\(479\) −36.4225 −1.66419 −0.832093 0.554635i \(-0.812858\pi\)
−0.832093 + 0.554635i \(0.812858\pi\)
\(480\) −3.39710 −0.155056
\(481\) 7.85401 0.358112
\(482\) 29.2106 1.33051
\(483\) 0 0
\(484\) 12.7856 0.581163
\(485\) 6.36589 0.289060
\(486\) 1.70252 0.0772280
\(487\) 34.3756 1.55771 0.778853 0.627207i \(-0.215802\pi\)
0.778853 + 0.627207i \(0.215802\pi\)
\(488\) −1.87519 −0.0848859
\(489\) 0.316974 0.0143340
\(490\) 0 0
\(491\) −27.2807 −1.23116 −0.615581 0.788074i \(-0.711079\pi\)
−0.615581 + 0.788074i \(0.711079\pi\)
\(492\) 7.59197 0.342272
\(493\) 54.8064 2.46836
\(494\) 1.50708 0.0678068
\(495\) 3.59621 0.161637
\(496\) −0.165123 −0.00741423
\(497\) 0 0
\(498\) 13.8083 0.618766
\(499\) −13.9728 −0.625510 −0.312755 0.949834i \(-0.601252\pi\)
−0.312755 + 0.949834i \(0.601252\pi\)
\(500\) −6.10381 −0.272971
\(501\) −17.8139 −0.795867
\(502\) 24.7908 1.10647
\(503\) 18.0122 0.803126 0.401563 0.915831i \(-0.368467\pi\)
0.401563 + 0.915831i \(0.368467\pi\)
\(504\) 0 0
\(505\) 1.68007 0.0747620
\(506\) −49.2632 −2.19002
\(507\) 12.3647 0.549135
\(508\) −0.0993652 −0.00440862
\(509\) 25.8573 1.14610 0.573052 0.819519i \(-0.305759\pi\)
0.573052 + 0.819519i \(0.305759\pi\)
\(510\) −9.65328 −0.427454
\(511\) 0 0
\(512\) −4.96146 −0.219268
\(513\) 1.11057 0.0490329
\(514\) −19.0909 −0.842064
\(515\) 6.90496 0.304269
\(516\) 4.10925 0.180899
\(517\) −28.9422 −1.27288
\(518\) 0 0
\(519\) −22.5077 −0.987977
\(520\) 1.07014 0.0469287
\(521\) 29.7281 1.30241 0.651205 0.758902i \(-0.274264\pi\)
0.651205 + 0.758902i \(0.274264\pi\)
\(522\) 11.7826 0.515709
\(523\) −43.7715 −1.91400 −0.956998 0.290095i \(-0.906313\pi\)
−0.956998 + 0.290095i \(0.906313\pi\)
\(524\) 14.6766 0.641150
\(525\) 0 0
\(526\) 41.8994 1.82690
\(527\) −0.262069 −0.0114159
\(528\) 25.0624 1.09070
\(529\) 10.1869 0.442907
\(530\) 7.49163 0.325415
\(531\) 0.612378 0.0265749
\(532\) 0 0
\(533\) −6.73434 −0.291696
\(534\) −8.45675 −0.365960
\(535\) 8.12105 0.351103
\(536\) 13.4868 0.582543
\(537\) 3.34758 0.144459
\(538\) −31.5075 −1.35838
\(539\) 0 0
\(540\) −0.643361 −0.0276859
\(541\) −40.8984 −1.75836 −0.879179 0.476491i \(-0.841908\pi\)
−0.879179 + 0.476491i \(0.841908\pi\)
\(542\) 38.8696 1.66959
\(543\) −12.2063 −0.523822
\(544\) −37.5746 −1.61100
\(545\) −2.58470 −0.110716
\(546\) 0 0
\(547\) 7.91121 0.338259 0.169129 0.985594i \(-0.445904\pi\)
0.169129 + 0.985594i \(0.445904\pi\)
\(548\) 1.92033 0.0820322
\(549\) −1.00000 −0.0426790
\(550\) 38.3736 1.63626
\(551\) 7.68589 0.327430
\(552\) −10.8026 −0.459789
\(553\) 0 0
\(554\) 24.3512 1.03459
\(555\) −7.05491 −0.299464
\(556\) −3.14407 −0.133338
\(557\) 40.6542 1.72257 0.861286 0.508121i \(-0.169660\pi\)
0.861286 + 0.508121i \(0.169660\pi\)
\(558\) −0.0563409 −0.00238510
\(559\) −3.64504 −0.154169
\(560\) 0 0
\(561\) 39.7769 1.67938
\(562\) −5.00472 −0.211111
\(563\) −19.3344 −0.814848 −0.407424 0.913239i \(-0.633573\pi\)
−0.407424 + 0.913239i \(0.633573\pi\)
\(564\) 5.17775 0.218023
\(565\) −1.52194 −0.0640287
\(566\) 12.1132 0.509155
\(567\) 0 0
\(568\) 23.7798 0.997779
\(569\) −31.1132 −1.30433 −0.652167 0.758075i \(-0.726140\pi\)
−0.652167 + 0.758075i \(0.726140\pi\)
\(570\) −1.35375 −0.0567022
\(571\) 7.23244 0.302668 0.151334 0.988483i \(-0.451643\pi\)
0.151334 + 0.988483i \(0.451643\pi\)
\(572\) 3.59751 0.150419
\(573\) 2.91525 0.121786
\(574\) 0 0
\(575\) −25.8509 −1.07806
\(576\) 1.90144 0.0792268
\(577\) −9.34896 −0.389202 −0.194601 0.980882i \(-0.562341\pi\)
−0.194601 + 0.980882i \(0.562341\pi\)
\(578\) −77.8301 −3.23731
\(579\) 16.4879 0.685212
\(580\) −4.45248 −0.184879
\(581\) 0 0
\(582\) 15.1375 0.627470
\(583\) −30.8697 −1.27849
\(584\) −26.8351 −1.11044
\(585\) 0.570683 0.0235949
\(586\) 6.99092 0.288792
\(587\) 45.3176 1.87046 0.935228 0.354046i \(-0.115194\pi\)
0.935228 + 0.354046i \(0.115194\pi\)
\(588\) 0 0
\(589\) −0.0367517 −0.00151433
\(590\) −0.746465 −0.0307315
\(591\) 3.08933 0.127078
\(592\) −49.1665 −2.02073
\(593\) −29.4132 −1.20786 −0.603928 0.797039i \(-0.706399\pi\)
−0.603928 + 0.797039i \(0.706399\pi\)
\(594\) 8.55145 0.350870
\(595\) 0 0
\(596\) 10.2416 0.419510
\(597\) 3.32564 0.136109
\(598\) −7.81760 −0.319685
\(599\) 19.3224 0.789493 0.394746 0.918790i \(-0.370832\pi\)
0.394746 + 0.918790i \(0.370832\pi\)
\(600\) 8.41469 0.343528
\(601\) 14.9795 0.611025 0.305513 0.952188i \(-0.401172\pi\)
0.305513 + 0.952188i \(0.401172\pi\)
\(602\) 0 0
\(603\) 7.19225 0.292891
\(604\) 5.33342 0.217014
\(605\) 10.1873 0.414174
\(606\) 3.99504 0.162288
\(607\) −38.3167 −1.55523 −0.777613 0.628743i \(-0.783570\pi\)
−0.777613 + 0.628743i \(0.783570\pi\)
\(608\) −5.26935 −0.213700
\(609\) 0 0
\(610\) 1.21896 0.0493544
\(611\) −4.59285 −0.185807
\(612\) −7.11609 −0.287651
\(613\) 0.941209 0.0380151 0.0190075 0.999819i \(-0.493949\pi\)
0.0190075 + 0.999819i \(0.493949\pi\)
\(614\) −39.5626 −1.59662
\(615\) 6.04916 0.243926
\(616\) 0 0
\(617\) 37.7881 1.52129 0.760646 0.649167i \(-0.224883\pi\)
0.760646 + 0.649167i \(0.224883\pi\)
\(618\) 16.4194 0.660484
\(619\) 8.85132 0.355764 0.177882 0.984052i \(-0.443075\pi\)
0.177882 + 0.984052i \(0.443075\pi\)
\(620\) 0.0212905 0.000855048 0
\(621\) −5.76080 −0.231173
\(622\) −46.4611 −1.86292
\(623\) 0 0
\(624\) 3.97716 0.159214
\(625\) 17.5735 0.702939
\(626\) 17.8072 0.711719
\(627\) 5.57819 0.222772
\(628\) 7.34221 0.292986
\(629\) −78.0330 −3.11138
\(630\) 0 0
\(631\) 34.8029 1.38548 0.692740 0.721188i \(-0.256403\pi\)
0.692740 + 0.721188i \(0.256403\pi\)
\(632\) 10.6743 0.424600
\(633\) −5.28003 −0.209862
\(634\) −17.9812 −0.714126
\(635\) −0.0791726 −0.00314187
\(636\) 5.52259 0.218985
\(637\) 0 0
\(638\) 59.1816 2.34302
\(639\) 12.6813 0.501664
\(640\) −9.11198 −0.360183
\(641\) −34.9944 −1.38220 −0.691098 0.722761i \(-0.742873\pi\)
−0.691098 + 0.722761i \(0.742873\pi\)
\(642\) 19.3111 0.762148
\(643\) −2.10935 −0.0831846 −0.0415923 0.999135i \(-0.513243\pi\)
−0.0415923 + 0.999135i \(0.513243\pi\)
\(644\) 0 0
\(645\) 3.27418 0.128921
\(646\) −14.9735 −0.589125
\(647\) 24.2631 0.953881 0.476941 0.878936i \(-0.341746\pi\)
0.476941 + 0.878936i \(0.341746\pi\)
\(648\) 1.87519 0.0736644
\(649\) 3.07586 0.120738
\(650\) 6.08952 0.238851
\(651\) 0 0
\(652\) −0.284826 −0.0111547
\(653\) −16.7175 −0.654208 −0.327104 0.944988i \(-0.606073\pi\)
−0.327104 + 0.944988i \(0.606073\pi\)
\(654\) −6.14618 −0.240335
\(655\) 11.6941 0.456925
\(656\) 42.1573 1.64597
\(657\) −14.3106 −0.558310
\(658\) 0 0
\(659\) −11.6639 −0.454361 −0.227181 0.973853i \(-0.572951\pi\)
−0.227181 + 0.973853i \(0.572951\pi\)
\(660\) −3.23148 −0.125785
\(661\) −22.8255 −0.887811 −0.443905 0.896074i \(-0.646407\pi\)
−0.443905 + 0.896074i \(0.646407\pi\)
\(662\) −26.1833 −1.01764
\(663\) 6.31222 0.245146
\(664\) 15.2088 0.590215
\(665\) 0 0
\(666\) −16.7759 −0.650054
\(667\) −39.8685 −1.54372
\(668\) 16.0073 0.619339
\(669\) 5.64363 0.218195
\(670\) −8.76708 −0.338702
\(671\) −5.02281 −0.193903
\(672\) 0 0
\(673\) −5.73065 −0.220900 −0.110450 0.993882i \(-0.535229\pi\)
−0.110450 + 0.993882i \(0.535229\pi\)
\(674\) 5.29549 0.203975
\(675\) 4.48738 0.172719
\(676\) −11.1107 −0.427333
\(677\) 7.16870 0.275515 0.137758 0.990466i \(-0.456010\pi\)
0.137758 + 0.990466i \(0.456010\pi\)
\(678\) −3.61904 −0.138989
\(679\) 0 0
\(680\) −10.6323 −0.407730
\(681\) −24.6696 −0.945340
\(682\) −0.282990 −0.0108362
\(683\) −7.97371 −0.305105 −0.152553 0.988295i \(-0.548749\pi\)
−0.152553 + 0.988295i \(0.548749\pi\)
\(684\) −0.997939 −0.0381571
\(685\) 1.53008 0.0584615
\(686\) 0 0
\(687\) 17.4454 0.665585
\(688\) 22.8182 0.869934
\(689\) −4.89873 −0.186627
\(690\) 7.02220 0.267331
\(691\) 25.2094 0.959009 0.479505 0.877539i \(-0.340816\pi\)
0.479505 + 0.877539i \(0.340816\pi\)
\(692\) 20.2250 0.768838
\(693\) 0 0
\(694\) −50.8774 −1.93128
\(695\) −2.50515 −0.0950256
\(696\) 12.9775 0.491913
\(697\) 66.9085 2.53434
\(698\) −44.8079 −1.69600
\(699\) 12.0618 0.456220
\(700\) 0 0
\(701\) −29.8776 −1.12846 −0.564230 0.825617i \(-0.690827\pi\)
−0.564230 + 0.825617i \(0.690827\pi\)
\(702\) 1.35703 0.0512179
\(703\) −10.9431 −0.412727
\(704\) 9.55059 0.359951
\(705\) 4.12555 0.155377
\(706\) 52.6270 1.98064
\(707\) 0 0
\(708\) −0.550271 −0.0206804
\(709\) 5.82246 0.218667 0.109334 0.994005i \(-0.465128\pi\)
0.109334 + 0.994005i \(0.465128\pi\)
\(710\) −15.4580 −0.580129
\(711\) 5.69237 0.213480
\(712\) −9.31443 −0.349073
\(713\) 0.190640 0.00713953
\(714\) 0 0
\(715\) 2.86644 0.107199
\(716\) −3.00807 −0.112417
\(717\) −2.43011 −0.0907540
\(718\) −15.4757 −0.577548
\(719\) 47.7077 1.77920 0.889599 0.456742i \(-0.150984\pi\)
0.889599 + 0.456742i \(0.150984\pi\)
\(720\) −3.57251 −0.133140
\(721\) 0 0
\(722\) 30.2481 1.12572
\(723\) 17.1573 0.638085
\(724\) 10.9683 0.407635
\(725\) 31.0556 1.15338
\(726\) 24.2246 0.899058
\(727\) 2.01118 0.0745907 0.0372953 0.999304i \(-0.488126\pi\)
0.0372953 + 0.999304i \(0.488126\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 17.4441 0.645635
\(731\) 36.2151 1.33946
\(732\) 0.898581 0.0332125
\(733\) 6.73511 0.248767 0.124383 0.992234i \(-0.460305\pi\)
0.124383 + 0.992234i \(0.460305\pi\)
\(734\) 36.2865 1.33936
\(735\) 0 0
\(736\) 27.3334 1.00752
\(737\) 36.1253 1.33069
\(738\) 14.3843 0.529495
\(739\) 17.8702 0.657367 0.328684 0.944440i \(-0.393395\pi\)
0.328684 + 0.944440i \(0.393395\pi\)
\(740\) 6.33941 0.233041
\(741\) 0.885206 0.0325188
\(742\) 0 0
\(743\) 36.9318 1.35490 0.677448 0.735570i \(-0.263086\pi\)
0.677448 + 0.735570i \(0.263086\pi\)
\(744\) −0.0620550 −0.00227505
\(745\) 8.16030 0.298970
\(746\) −19.7316 −0.722424
\(747\) 8.11052 0.296748
\(748\) −35.7428 −1.30689
\(749\) 0 0
\(750\) −11.5648 −0.422285
\(751\) −15.0806 −0.550298 −0.275149 0.961402i \(-0.588727\pi\)
−0.275149 + 0.961402i \(0.588727\pi\)
\(752\) 28.7515 1.04846
\(753\) 14.5612 0.530641
\(754\) 9.39156 0.342020
\(755\) 4.24958 0.154658
\(756\) 0 0
\(757\) −3.32546 −0.120866 −0.0604329 0.998172i \(-0.519248\pi\)
−0.0604329 + 0.998172i \(0.519248\pi\)
\(758\) 20.5845 0.747663
\(759\) −28.9354 −1.05029
\(760\) −1.49104 −0.0540857
\(761\) −47.3280 −1.71564 −0.857820 0.513950i \(-0.828182\pi\)
−0.857820 + 0.513950i \(0.828182\pi\)
\(762\) −0.188265 −0.00682013
\(763\) 0 0
\(764\) −2.61959 −0.0947734
\(765\) −5.66999 −0.204999
\(766\) −19.2232 −0.694563
\(767\) 0.488109 0.0176246
\(768\) −17.8646 −0.644632
\(769\) −21.8179 −0.786772 −0.393386 0.919373i \(-0.628696\pi\)
−0.393386 + 0.919373i \(0.628696\pi\)
\(770\) 0 0
\(771\) −11.2133 −0.403838
\(772\) −14.8157 −0.533228
\(773\) 8.69294 0.312663 0.156332 0.987705i \(-0.450033\pi\)
0.156332 + 0.987705i \(0.450033\pi\)
\(774\) 7.78570 0.279851
\(775\) −0.148499 −0.00533425
\(776\) 16.6727 0.598516
\(777\) 0 0
\(778\) −47.2284 −1.69322
\(779\) 9.38305 0.336182
\(780\) −0.512805 −0.0183614
\(781\) 63.6957 2.27921
\(782\) 77.6712 2.77752
\(783\) 6.92066 0.247324
\(784\) 0 0
\(785\) 5.85015 0.208801
\(786\) 27.8074 0.991858
\(787\) −5.38176 −0.191839 −0.0959195 0.995389i \(-0.530579\pi\)
−0.0959195 + 0.995389i \(0.530579\pi\)
\(788\) −2.77601 −0.0988913
\(789\) 24.6102 0.876146
\(790\) −6.93878 −0.246871
\(791\) 0 0
\(792\) 9.41873 0.334680
\(793\) −0.797072 −0.0283049
\(794\) −59.3573 −2.10651
\(795\) 4.40031 0.156063
\(796\) −2.98836 −0.105919
\(797\) 50.2321 1.77931 0.889657 0.456630i \(-0.150943\pi\)
0.889657 + 0.456630i \(0.150943\pi\)
\(798\) 0 0
\(799\) 45.6319 1.61434
\(800\) −21.2914 −0.752763
\(801\) −4.96719 −0.175507
\(802\) −47.7570 −1.68636
\(803\) −71.8795 −2.53657
\(804\) −6.46282 −0.227926
\(805\) 0 0
\(806\) −0.0449078 −0.00158181
\(807\) −18.5064 −0.651455
\(808\) 4.40022 0.154799
\(809\) −27.1109 −0.953169 −0.476584 0.879129i \(-0.658125\pi\)
−0.476584 + 0.879129i \(0.658125\pi\)
\(810\) −1.21896 −0.0428300
\(811\) 39.7898 1.39721 0.698605 0.715508i \(-0.253805\pi\)
0.698605 + 0.715508i \(0.253805\pi\)
\(812\) 0 0
\(813\) 22.8306 0.800705
\(814\) −84.2623 −2.95339
\(815\) −0.226945 −0.00794954
\(816\) −39.5148 −1.38330
\(817\) 5.07869 0.177681
\(818\) 24.8398 0.868504
\(819\) 0 0
\(820\) −5.43566 −0.189821
\(821\) 23.3428 0.814670 0.407335 0.913279i \(-0.366458\pi\)
0.407335 + 0.913279i \(0.366458\pi\)
\(822\) 3.63840 0.126904
\(823\) −10.5596 −0.368083 −0.184042 0.982918i \(-0.558918\pi\)
−0.184042 + 0.982918i \(0.558918\pi\)
\(824\) 18.0846 0.630007
\(825\) 22.5393 0.784717
\(826\) 0 0
\(827\) 1.17250 0.0407717 0.0203859 0.999792i \(-0.493511\pi\)
0.0203859 + 0.999792i \(0.493511\pi\)
\(828\) 5.17655 0.179897
\(829\) 37.1523 1.29035 0.645177 0.764034i \(-0.276784\pi\)
0.645177 + 0.764034i \(0.276784\pi\)
\(830\) −9.88642 −0.343163
\(831\) 14.3030 0.496167
\(832\) 1.51559 0.0525435
\(833\) 0 0
\(834\) −5.95701 −0.206274
\(835\) 12.7543 0.441381
\(836\) −5.01246 −0.173359
\(837\) −0.0330926 −0.00114385
\(838\) 38.4859 1.32947
\(839\) −4.08386 −0.140990 −0.0704952 0.997512i \(-0.522458\pi\)
−0.0704952 + 0.997512i \(0.522458\pi\)
\(840\) 0 0
\(841\) 18.8955 0.651568
\(842\) 38.6357 1.33147
\(843\) −2.93959 −0.101245
\(844\) 4.74453 0.163314
\(845\) −8.85280 −0.304545
\(846\) 9.81018 0.337281
\(847\) 0 0
\(848\) 30.6663 1.05308
\(849\) 7.11484 0.244181
\(850\) −60.5020 −2.07520
\(851\) 56.7645 1.94586
\(852\) −11.3952 −0.390392
\(853\) 49.8635 1.70729 0.853647 0.520853i \(-0.174386\pi\)
0.853647 + 0.520853i \(0.174386\pi\)
\(854\) 0 0
\(855\) −0.795141 −0.0271933
\(856\) 21.2696 0.726980
\(857\) −40.5246 −1.38429 −0.692147 0.721757i \(-0.743335\pi\)
−0.692147 + 0.721757i \(0.743335\pi\)
\(858\) 6.81612 0.232698
\(859\) 0.0749403 0.00255693 0.00127846 0.999999i \(-0.499593\pi\)
0.00127846 + 0.999999i \(0.499593\pi\)
\(860\) −2.94212 −0.100325
\(861\) 0 0
\(862\) −26.2711 −0.894798
\(863\) −34.0515 −1.15913 −0.579563 0.814927i \(-0.696777\pi\)
−0.579563 + 0.814927i \(0.696777\pi\)
\(864\) −4.74472 −0.161419
\(865\) 16.1149 0.547924
\(866\) −47.0911 −1.60022
\(867\) −45.7146 −1.55255
\(868\) 0 0
\(869\) 28.5917 0.969907
\(870\) −8.43602 −0.286008
\(871\) 5.73274 0.194247
\(872\) −6.76953 −0.229245
\(873\) 8.89123 0.300922
\(874\) 10.8924 0.368440
\(875\) 0 0
\(876\) 12.8592 0.434473
\(877\) 27.3300 0.922868 0.461434 0.887175i \(-0.347335\pi\)
0.461434 + 0.887175i \(0.347335\pi\)
\(878\) −0.515119 −0.0173844
\(879\) 4.10621 0.138499
\(880\) −17.9440 −0.604893
\(881\) −46.2965 −1.55977 −0.779884 0.625924i \(-0.784722\pi\)
−0.779884 + 0.625924i \(0.784722\pi\)
\(882\) 0 0
\(883\) −6.70623 −0.225683 −0.112841 0.993613i \(-0.535995\pi\)
−0.112841 + 0.993613i \(0.535995\pi\)
\(884\) −5.67204 −0.190771
\(885\) −0.438447 −0.0147382
\(886\) −26.5016 −0.890340
\(887\) −5.84579 −0.196283 −0.0981413 0.995172i \(-0.531290\pi\)
−0.0981413 + 0.995172i \(0.531290\pi\)
\(888\) −18.4773 −0.620058
\(889\) 0 0
\(890\) 6.05482 0.202958
\(891\) 5.02281 0.168271
\(892\) −5.07125 −0.169798
\(893\) 6.39928 0.214144
\(894\) 19.4045 0.648982
\(895\) −2.39678 −0.0801155
\(896\) 0 0
\(897\) −4.59178 −0.153315
\(898\) −19.3374 −0.645299
\(899\) −0.229023 −0.00763834
\(900\) −4.03227 −0.134409
\(901\) 48.6710 1.62147
\(902\) 72.2498 2.40566
\(903\) 0 0
\(904\) −3.98609 −0.132575
\(905\) 8.73939 0.290507
\(906\) 10.1051 0.335720
\(907\) −16.2984 −0.541180 −0.270590 0.962695i \(-0.587219\pi\)
−0.270590 + 0.962695i \(0.587219\pi\)
\(908\) 22.1676 0.735658
\(909\) 2.34654 0.0778300
\(910\) 0 0
\(911\) −5.51928 −0.182862 −0.0914309 0.995811i \(-0.529144\pi\)
−0.0914309 + 0.995811i \(0.529144\pi\)
\(912\) −5.54144 −0.183495
\(913\) 40.7376 1.34822
\(914\) −68.6315 −2.27013
\(915\) 0.715975 0.0236694
\(916\) −15.6761 −0.517954
\(917\) 0 0
\(918\) −13.4827 −0.444996
\(919\) −37.6925 −1.24336 −0.621681 0.783270i \(-0.713550\pi\)
−0.621681 + 0.783270i \(0.713550\pi\)
\(920\) 7.73439 0.254995
\(921\) −23.2377 −0.765707
\(922\) 5.16920 0.170239
\(923\) 10.1079 0.332705
\(924\) 0 0
\(925\) −44.2167 −1.45384
\(926\) −31.5017 −1.03521
\(927\) 9.64415 0.316755
\(928\) −32.8366 −1.07791
\(929\) −59.7371 −1.95991 −0.979956 0.199214i \(-0.936161\pi\)
−0.979956 + 0.199214i \(0.936161\pi\)
\(930\) 0.0403387 0.00132276
\(931\) 0 0
\(932\) −10.8385 −0.355027
\(933\) −27.2896 −0.893421
\(934\) −15.1416 −0.495449
\(935\) −28.4793 −0.931372
\(936\) 1.49466 0.0488545
\(937\) 10.0508 0.328345 0.164173 0.986432i \(-0.447505\pi\)
0.164173 + 0.986432i \(0.447505\pi\)
\(938\) 0 0
\(939\) 10.4593 0.341327
\(940\) −3.70714 −0.120914
\(941\) 50.8909 1.65900 0.829498 0.558509i \(-0.188626\pi\)
0.829498 + 0.558509i \(0.188626\pi\)
\(942\) 13.9111 0.453249
\(943\) −48.6721 −1.58498
\(944\) −3.05559 −0.0994510
\(945\) 0 0
\(946\) 39.1061 1.27145
\(947\) 60.2902 1.95917 0.979585 0.201032i \(-0.0644295\pi\)
0.979585 + 0.201032i \(0.0644295\pi\)
\(948\) −5.11505 −0.166129
\(949\) −11.4066 −0.370273
\(950\) −8.48462 −0.275277
\(951\) −10.5615 −0.342481
\(952\) 0 0
\(953\) −17.3439 −0.561824 −0.280912 0.959733i \(-0.590637\pi\)
−0.280912 + 0.959733i \(0.590637\pi\)
\(954\) 10.4635 0.338769
\(955\) −2.08725 −0.0675417
\(956\) 2.18365 0.0706242
\(957\) 34.7612 1.12367
\(958\) 62.0101 2.00346
\(959\) 0 0
\(960\) −1.36138 −0.0439385
\(961\) −30.9989 −0.999965
\(962\) −13.3716 −0.431118
\(963\) 11.3426 0.365512
\(964\) −15.4172 −0.496554
\(965\) −11.8049 −0.380013
\(966\) 0 0
\(967\) 21.5858 0.694154 0.347077 0.937837i \(-0.387174\pi\)
0.347077 + 0.937837i \(0.387174\pi\)
\(968\) 26.6814 0.857573
\(969\) −8.79490 −0.282533
\(970\) −10.8381 −0.347990
\(971\) −12.1881 −0.391135 −0.195568 0.980690i \(-0.562655\pi\)
−0.195568 + 0.980690i \(0.562655\pi\)
\(972\) −0.898581 −0.0288220
\(973\) 0 0
\(974\) −58.5252 −1.87527
\(975\) 3.57677 0.114548
\(976\) 4.98971 0.159717
\(977\) 45.5427 1.45704 0.728520 0.685025i \(-0.240209\pi\)
0.728520 + 0.685025i \(0.240209\pi\)
\(978\) −0.539654 −0.0172562
\(979\) −24.9493 −0.797382
\(980\) 0 0
\(981\) −3.61005 −0.115260
\(982\) 46.4460 1.48215
\(983\) 34.4219 1.09789 0.548943 0.835860i \(-0.315030\pi\)
0.548943 + 0.835860i \(0.315030\pi\)
\(984\) 15.8432 0.505062
\(985\) −2.21188 −0.0704764
\(986\) −93.3092 −2.97157
\(987\) 0 0
\(988\) −0.795429 −0.0253060
\(989\) −26.3444 −0.837703
\(990\) −6.12262 −0.194590
\(991\) 54.7416 1.73893 0.869463 0.493998i \(-0.164465\pi\)
0.869463 + 0.493998i \(0.164465\pi\)
\(992\) 0.157015 0.00498524
\(993\) −15.3791 −0.488042
\(994\) 0 0
\(995\) −2.38107 −0.0754851
\(996\) −7.28796 −0.230928
\(997\) −35.7253 −1.13143 −0.565716 0.824600i \(-0.691400\pi\)
−0.565716 + 0.824600i \(0.691400\pi\)
\(998\) 23.7891 0.753029
\(999\) −9.85357 −0.311753
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8967.2.a.bi.1.4 19
7.6 odd 2 8967.2.a.bj.1.4 yes 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8967.2.a.bi.1.4 19 1.1 even 1 trivial
8967.2.a.bj.1.4 yes 19 7.6 odd 2