L(s) = 1 | + (0.213 − 1.39i)2-s + (−1.90 − 0.595i)4-s + (1.90 + 1.17i)5-s + (2.16 + 2.16i)7-s + (−1.23 + 2.54i)8-s + (2.04 − 2.40i)10-s + (−3.61 − 4.97i)11-s + (0.749 + 4.72i)13-s + (3.48 − 2.56i)14-s + (3.29 + 2.27i)16-s + (3.51 + 1.79i)17-s + (0.678 + 2.08i)19-s + (−2.93 − 3.37i)20-s + (−7.73 + 3.99i)22-s + (−0.374 + 2.36i)23-s + ⋯ |
L(s) = 1 | + (0.150 − 0.988i)2-s + (−0.954 − 0.297i)4-s + (0.850 + 0.525i)5-s + (0.817 + 0.817i)7-s + (−0.438 + 0.898i)8-s + (0.647 − 0.762i)10-s + (−1.09 − 1.50i)11-s + (0.207 + 1.31i)13-s + (0.931 − 0.685i)14-s + (0.822 + 0.568i)16-s + (0.852 + 0.434i)17-s + (0.155 + 0.479i)19-s + (−0.655 − 0.754i)20-s + (−1.64 + 0.852i)22-s + (−0.0781 + 0.493i)23-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(0.942+0.334i)Λ(2−s)
Λ(s)=(=(900s/2ΓC(s+1/2)L(s)(0.942+0.334i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
0.942+0.334i
|
Analytic conductor: |
7.18653 |
Root analytic conductor: |
2.68077 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(523,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 900, ( :1/2), 0.942+0.334i)
|
Particular Values
L(1) |
≈ |
1.81015−0.311325i |
L(21) |
≈ |
1.81015−0.311325i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.213+1.39i)T |
| 3 | 1 |
| 5 | 1+(−1.90−1.17i)T |
good | 7 | 1+(−2.16−2.16i)T+7iT2 |
| 11 | 1+(3.61+4.97i)T+(−3.39+10.4i)T2 |
| 13 | 1+(−0.749−4.72i)T+(−12.3+4.01i)T2 |
| 17 | 1+(−3.51−1.79i)T+(9.99+13.7i)T2 |
| 19 | 1+(−0.678−2.08i)T+(−15.3+11.1i)T2 |
| 23 | 1+(0.374−2.36i)T+(−21.8−7.10i)T2 |
| 29 | 1+(1.48+0.480i)T+(23.4+17.0i)T2 |
| 31 | 1+(−8.29+2.69i)T+(25.0−18.2i)T2 |
| 37 | 1+(−4.07+0.644i)T+(35.1−11.4i)T2 |
| 41 | 1+(−5.32−3.86i)T+(12.6+38.9i)T2 |
| 43 | 1+(8.72−8.72i)T−43iT2 |
| 47 | 1+(−3.47+1.77i)T+(27.6−38.0i)T2 |
| 53 | 1+(−5.54+2.82i)T+(31.1−42.8i)T2 |
| 59 | 1+(7.51+5.46i)T+(18.2+56.1i)T2 |
| 61 | 1+(0.715−0.519i)T+(18.8−58.0i)T2 |
| 67 | 1+(−1.52+2.98i)T+(−39.3−54.2i)T2 |
| 71 | 1+(5.96+1.93i)T+(57.4+41.7i)T2 |
| 73 | 1+(−0.906−0.143i)T+(69.4+22.5i)T2 |
| 79 | 1+(−2.98+9.17i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−6.49−3.31i)T+(48.7+67.1i)T2 |
| 89 | 1+(0.440+0.606i)T+(−27.5+84.6i)T2 |
| 97 | 1+(7.49+14.7i)T+(−57.0+78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.11802103674572688480552728599, −9.453670277433350561674761333761, −8.500509693527912398790480486167, −7.910909086021980594454525977230, −6.15217810417298522146555442964, −5.69373328375882962839800496002, −4.73830314057303887329945314908, −3.36989837021267752598167538843, −2.48709498532910147672588618672, −1.45883775908046964418610106721,
0.960439501459766255171930136021, 2.69212998620400082975752705063, 4.31951277903398438477799639001, 5.05016288608265463282294478621, 5.58551003484206922869247025839, 6.84936823697857497011602515615, 7.68180491952461002725909065479, 8.154328875528721060265077035300, 9.246210698966387276688722642291, 10.22489597104581188439777942464