Properties

Label 900.2.bj.f.523.17
Level $900$
Weight $2$
Character 900.523
Analytic conductor $7.187$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(127,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.bj (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(30\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 300)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 523.17
Character \(\chi\) \(=\) 900.523
Dual form 900.2.bj.f.487.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.213085 - 1.39807i) q^{2} +(-1.90919 - 0.595816i) q^{4} +(1.90262 + 1.17475i) q^{5} +(2.16308 + 2.16308i) q^{7} +(-1.23981 + 2.54222i) q^{8} +(2.04780 - 2.40967i) q^{10} +(-3.61787 - 4.97957i) q^{11} +(0.749054 + 4.72934i) q^{13} +(3.48505 - 2.56321i) q^{14} +(3.29001 + 2.27505i) q^{16} +(3.51342 + 1.79018i) q^{17} +(0.678754 + 2.08899i) q^{19} +(-2.93253 - 3.37643i) q^{20} +(-7.73269 + 3.99695i) q^{22} +(-0.374565 + 2.36491i) q^{23} +(2.23993 + 4.47020i) q^{25} +(6.77155 - 0.0394750i) q^{26} +(-2.84093 - 5.41853i) q^{28} +(-1.48003 - 0.480891i) q^{29} +(8.29187 - 2.69419i) q^{31} +(3.88173 - 4.11487i) q^{32} +(3.25145 - 4.53054i) q^{34} +(1.57444 + 6.65660i) q^{35} +(4.07167 - 0.644890i) q^{37} +(3.06518 - 0.503811i) q^{38} +(-5.34536 + 3.38041i) q^{40} +(5.32533 + 3.86908i) q^{41} +(-8.72991 + 8.72991i) q^{43} +(3.94029 + 11.6625i) q^{44} +(3.22649 + 1.02759i) q^{46} +(3.47691 - 1.77157i) q^{47} +2.35783i q^{49} +(6.72695 - 2.17904i) q^{50} +(1.38773 - 9.47550i) q^{52} +(5.54447 - 2.82505i) q^{53} +(-1.03369 - 13.7243i) q^{55} +(-8.18083 + 2.81721i) q^{56} +(-0.987690 + 1.96671i) q^{58} +(-7.51879 - 5.46272i) q^{59} +(-0.715358 + 0.519738i) q^{61} +(-1.99979 - 12.1667i) q^{62} +(-4.92573 - 6.30374i) q^{64} +(-4.13062 + 9.87809i) q^{65} +(1.52131 - 2.98575i) q^{67} +(-5.64117 - 5.51114i) q^{68} +(9.64187 - 0.782756i) q^{70} +(-5.96760 - 1.93899i) q^{71} +(0.906675 + 0.143603i) q^{73} +(-0.0339856 - 5.82989i) q^{74} +(-0.0512164 - 4.39269i) q^{76} +(2.94547 - 18.5969i) q^{77} +(2.98135 - 9.17567i) q^{79} +(3.58702 + 8.19349i) q^{80} +(6.54398 - 6.62073i) q^{82} +(6.49903 + 3.31142i) q^{83} +(4.58170 + 7.53341i) q^{85} +(10.3448 + 14.0652i) q^{86} +(17.1446 - 3.02368i) q^{88} +(-0.440547 - 0.606362i) q^{89} +(-8.60967 + 11.8502i) q^{91} +(2.12417 - 4.29189i) q^{92} +(-1.73590 - 5.23845i) q^{94} +(-1.16263 + 4.77192i) q^{95} +(-7.49977 - 14.7191i) q^{97} +(3.29641 + 0.502419i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 12 q^{8} + 8 q^{10} + 4 q^{13} - 20 q^{17} + 20 q^{20} - 12 q^{22} + 20 q^{25} + 4 q^{28} + 20 q^{32} - 4 q^{37} + 76 q^{38} - 92 q^{40} + 140 q^{44} + 164 q^{50} - 172 q^{52} + 4 q^{53} - 120 q^{58}+ \cdots - 256 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.213085 1.39807i 0.150674 0.988583i
\(3\) 0 0
\(4\) −1.90919 0.595816i −0.954595 0.297908i
\(5\) 1.90262 + 1.17475i 0.850878 + 0.525364i
\(6\) 0 0
\(7\) 2.16308 + 2.16308i 0.817567 + 0.817567i 0.985755 0.168188i \(-0.0537915\pi\)
−0.168188 + 0.985755i \(0.553791\pi\)
\(8\) −1.23981 + 2.54222i −0.438340 + 0.898809i
\(9\) 0 0
\(10\) 2.04780 2.40967i 0.647571 0.762005i
\(11\) −3.61787 4.97957i −1.09083 1.50140i −0.847011 0.531575i \(-0.821600\pi\)
−0.243817 0.969821i \(-0.578400\pi\)
\(12\) 0 0
\(13\) 0.749054 + 4.72934i 0.207750 + 1.31168i 0.842387 + 0.538872i \(0.181150\pi\)
−0.634637 + 0.772810i \(0.718850\pi\)
\(14\) 3.48505 2.56321i 0.931420 0.685047i
\(15\) 0 0
\(16\) 3.29001 + 2.27505i 0.822502 + 0.568763i
\(17\) 3.51342 + 1.79018i 0.852130 + 0.434182i 0.824786 0.565444i \(-0.191295\pi\)
0.0273432 + 0.999626i \(0.491295\pi\)
\(18\) 0 0
\(19\) 0.678754 + 2.08899i 0.155717 + 0.479247i 0.998233 0.0594243i \(-0.0189265\pi\)
−0.842516 + 0.538671i \(0.818926\pi\)
\(20\) −2.93253 3.37643i −0.655733 0.754993i
\(21\) 0 0
\(22\) −7.73269 + 3.99695i −1.64862 + 0.852153i
\(23\) −0.374565 + 2.36491i −0.0781022 + 0.493118i 0.917368 + 0.398041i \(0.130310\pi\)
−0.995470 + 0.0950770i \(0.969690\pi\)
\(24\) 0 0
\(25\) 2.23993 + 4.47020i 0.447986 + 0.894041i
\(26\) 6.77155 0.0394750i 1.32801 0.00774169i
\(27\) 0 0
\(28\) −2.84093 5.41853i −0.536886 1.02401i
\(29\) −1.48003 0.480891i −0.274834 0.0892991i 0.168357 0.985726i \(-0.446154\pi\)
−0.443192 + 0.896427i \(0.646154\pi\)
\(30\) 0 0
\(31\) 8.29187 2.69419i 1.48926 0.483891i 0.552398 0.833580i \(-0.313713\pi\)
0.936866 + 0.349689i \(0.113713\pi\)
\(32\) 3.88173 4.11487i 0.686199 0.727414i
\(33\) 0 0
\(34\) 3.25145 4.53054i 0.557619 0.776981i
\(35\) 1.57444 + 6.65660i 0.266130 + 1.12517i
\(36\) 0 0
\(37\) 4.07167 0.644890i 0.669379 0.106019i 0.187510 0.982263i \(-0.439958\pi\)
0.481869 + 0.876243i \(0.339958\pi\)
\(38\) 3.06518 0.503811i 0.497238 0.0817289i
\(39\) 0 0
\(40\) −5.34536 + 3.38041i −0.845175 + 0.534489i
\(41\) 5.32533 + 3.86908i 0.831677 + 0.604248i 0.920033 0.391840i \(-0.128161\pi\)
−0.0883565 + 0.996089i \(0.528161\pi\)
\(42\) 0 0
\(43\) −8.72991 + 8.72991i −1.33130 + 1.33130i −0.427088 + 0.904210i \(0.640461\pi\)
−0.904210 + 0.427088i \(0.859539\pi\)
\(44\) 3.94029 + 11.6625i 0.594021 + 1.75819i
\(45\) 0 0
\(46\) 3.22649 + 1.02759i 0.475720 + 0.151511i
\(47\) 3.47691 1.77157i 0.507159 0.258410i −0.181637 0.983366i \(-0.558140\pi\)
0.688796 + 0.724955i \(0.258140\pi\)
\(48\) 0 0
\(49\) 2.35783i 0.336833i
\(50\) 6.72695 2.17904i 0.951334 0.308163i
\(51\) 0 0
\(52\) 1.38773 9.47550i 0.192444 1.31402i
\(53\) 5.54447 2.82505i 0.761592 0.388050i −0.0296448 0.999560i \(-0.509438\pi\)
0.791237 + 0.611510i \(0.209438\pi\)
\(54\) 0 0
\(55\) −1.03369 13.7243i −0.139382 1.85059i
\(56\) −8.18083 + 2.81721i −1.09321 + 0.376465i
\(57\) 0 0
\(58\) −0.987690 + 1.96671i −0.129690 + 0.258242i
\(59\) −7.51879 5.46272i −0.978863 0.711186i −0.0214087 0.999771i \(-0.506815\pi\)
−0.957454 + 0.288585i \(0.906815\pi\)
\(60\) 0 0
\(61\) −0.715358 + 0.519738i −0.0915921 + 0.0665456i −0.632639 0.774447i \(-0.718028\pi\)
0.541047 + 0.840993i \(0.318028\pi\)
\(62\) −1.99979 12.1667i −0.253973 1.54517i
\(63\) 0 0
\(64\) −4.92573 6.30374i −0.615717 0.787968i
\(65\) −4.13062 + 9.87809i −0.512341 + 1.22523i
\(66\) 0 0
\(67\) 1.52131 2.98575i 0.185858 0.364767i −0.779211 0.626761i \(-0.784380\pi\)
0.965069 + 0.261994i \(0.0843801\pi\)
\(68\) −5.64117 5.51114i −0.684092 0.668324i
\(69\) 0 0
\(70\) 9.64187 0.782756i 1.15242 0.0935573i
\(71\) −5.96760 1.93899i −0.708224 0.230116i −0.0673136 0.997732i \(-0.521443\pi\)
−0.640910 + 0.767616i \(0.721443\pi\)
\(72\) 0 0
\(73\) 0.906675 + 0.143603i 0.106118 + 0.0168075i 0.209268 0.977858i \(-0.432892\pi\)
−0.103149 + 0.994666i \(0.532892\pi\)
\(74\) −0.0339856 5.82989i −0.00395074 0.677711i
\(75\) 0 0
\(76\) −0.0512164 4.39269i −0.00587493 0.503876i
\(77\) 2.94547 18.5969i 0.335667 2.11932i
\(78\) 0 0
\(79\) 2.98135 9.17567i 0.335429 1.03234i −0.631082 0.775716i \(-0.717389\pi\)
0.966511 0.256627i \(-0.0826112\pi\)
\(80\) 3.58702 + 8.19349i 0.401041 + 0.916060i
\(81\) 0 0
\(82\) 6.54398 6.62073i 0.722662 0.731137i
\(83\) 6.49903 + 3.31142i 0.713361 + 0.363476i 0.772708 0.634762i \(-0.218902\pi\)
−0.0593466 + 0.998237i \(0.518902\pi\)
\(84\) 0 0
\(85\) 4.58170 + 7.53341i 0.496955 + 0.817114i
\(86\) 10.3448 + 14.0652i 1.11551 + 1.51669i
\(87\) 0 0
\(88\) 17.1446 3.02368i 1.82762 0.322325i
\(89\) −0.440547 0.606362i −0.0466979 0.0642742i 0.785029 0.619458i \(-0.212648\pi\)
−0.831727 + 0.555184i \(0.812648\pi\)
\(90\) 0 0
\(91\) −8.60967 + 11.8502i −0.902539 + 1.24224i
\(92\) 2.12417 4.29189i 0.221460 0.447460i
\(93\) 0 0
\(94\) −1.73590 5.23845i −0.179045 0.540305i
\(95\) −1.16263 + 4.77192i −0.119283 + 0.489589i
\(96\) 0 0
\(97\) −7.49977 14.7191i −0.761486 1.49450i −0.866036 0.499981i \(-0.833340\pi\)
0.104550 0.994520i \(-0.466660\pi\)
\(98\) 3.29641 + 0.502419i 0.332987 + 0.0507520i
\(99\) 0 0
\(100\) −1.61303 9.86905i −0.161303 0.986905i
\(101\) −11.9475 −1.18882 −0.594411 0.804162i \(-0.702615\pi\)
−0.594411 + 0.804162i \(0.702615\pi\)
\(102\) 0 0
\(103\) −2.47283 4.85319i −0.243655 0.478199i 0.736499 0.676439i \(-0.236478\pi\)
−0.980154 + 0.198239i \(0.936478\pi\)
\(104\) −12.9517 3.95923i −1.27002 0.388235i
\(105\) 0 0
\(106\) −2.76817 8.35353i −0.268868 0.811366i
\(107\) 0.462862 + 0.462862i 0.0447466 + 0.0447466i 0.729126 0.684379i \(-0.239927\pi\)
−0.684379 + 0.729126i \(0.739927\pi\)
\(108\) 0 0
\(109\) 2.19584 3.02232i 0.210324 0.289486i −0.690802 0.723044i \(-0.742742\pi\)
0.901125 + 0.433559i \(0.142742\pi\)
\(110\) −19.4078 1.47929i −1.85046 0.141045i
\(111\) 0 0
\(112\) 2.19543 + 12.0377i 0.207449 + 1.13745i
\(113\) −0.121019 0.764081i −0.0113845 0.0718787i 0.981342 0.192270i \(-0.0615850\pi\)
−0.992726 + 0.120392i \(0.961585\pi\)
\(114\) 0 0
\(115\) −3.49083 + 4.05951i −0.325522 + 0.378551i
\(116\) 2.53913 + 1.79994i 0.235753 + 0.167120i
\(117\) 0 0
\(118\) −9.23940 + 9.34775i −0.850556 + 0.860530i
\(119\) 3.72751 + 11.4721i 0.341701 + 1.05165i
\(120\) 0 0
\(121\) −8.30794 + 25.5692i −0.755268 + 2.32448i
\(122\) 0.574196 + 1.11087i 0.0519853 + 0.100573i
\(123\) 0 0
\(124\) −17.4360 + 0.203294i −1.56580 + 0.0182564i
\(125\) −0.989632 + 11.1365i −0.0885154 + 0.996075i
\(126\) 0 0
\(127\) 6.14470 + 0.973224i 0.545254 + 0.0863597i 0.422984 0.906137i \(-0.360983\pi\)
0.122270 + 0.992497i \(0.460983\pi\)
\(128\) −9.86266 + 5.54328i −0.871744 + 0.489961i
\(129\) 0 0
\(130\) 12.9301 + 7.87977i 1.13404 + 0.691101i
\(131\) 1.58146 0.513847i 0.138173 0.0448950i −0.239114 0.970991i \(-0.576857\pi\)
0.377287 + 0.926096i \(0.376857\pi\)
\(132\) 0 0
\(133\) −3.05045 + 5.98685i −0.264508 + 0.519126i
\(134\) −3.85011 2.76312i −0.332599 0.238697i
\(135\) 0 0
\(136\) −8.90700 + 6.71239i −0.763769 + 0.575583i
\(137\) −3.67379 + 0.581872i −0.313873 + 0.0497127i −0.311384 0.950284i \(-0.600792\pi\)
−0.00248964 + 0.999997i \(0.500792\pi\)
\(138\) 0 0
\(139\) −1.16095 + 0.843477i −0.0984702 + 0.0715428i −0.635931 0.771746i \(-0.719384\pi\)
0.537461 + 0.843289i \(0.319384\pi\)
\(140\) 0.960194 13.6468i 0.0811512 1.15336i
\(141\) 0 0
\(142\) −3.98245 + 7.92994i −0.334200 + 0.665466i
\(143\) 20.8401 20.8401i 1.74274 1.74274i
\(144\) 0 0
\(145\) −2.25101 2.65361i −0.186936 0.220371i
\(146\) 0.393966 1.23699i 0.0326049 0.102374i
\(147\) 0 0
\(148\) −8.15783 1.19475i −0.670569 0.0982079i
\(149\) 20.6530i 1.69196i 0.533217 + 0.845979i \(0.320983\pi\)
−0.533217 + 0.845979i \(0.679017\pi\)
\(150\) 0 0
\(151\) 16.4775i 1.34092i 0.741946 + 0.670459i \(0.233903\pi\)
−0.741946 + 0.670459i \(0.766097\pi\)
\(152\) −6.15219 0.864414i −0.499009 0.0701132i
\(153\) 0 0
\(154\) −25.3722 8.08070i −2.04455 0.651161i
\(155\) 18.9413 + 4.61484i 1.52140 + 0.370673i
\(156\) 0 0
\(157\) 5.04582 5.04582i 0.402700 0.402700i −0.476483 0.879184i \(-0.658089\pi\)
0.879184 + 0.476483i \(0.158089\pi\)
\(158\) −12.1929 6.12334i −0.970017 0.487147i
\(159\) 0 0
\(160\) 12.2194 3.26899i 0.966028 0.258436i
\(161\) −5.92570 + 4.30527i −0.467011 + 0.339303i
\(162\) 0 0
\(163\) −9.51202 + 1.50656i −0.745039 + 0.118003i −0.517401 0.855743i \(-0.673100\pi\)
−0.227638 + 0.973746i \(0.573100\pi\)
\(164\) −7.86180 10.5597i −0.613904 0.824575i
\(165\) 0 0
\(166\) 6.01444 8.38047i 0.466811 0.650451i
\(167\) −8.48953 + 16.6616i −0.656939 + 1.28932i 0.286598 + 0.958051i \(0.407475\pi\)
−0.943538 + 0.331265i \(0.892525\pi\)
\(168\) 0 0
\(169\) −9.44183 + 3.06784i −0.726294 + 0.235987i
\(170\) 11.5085 4.80026i 0.882663 0.368163i
\(171\) 0 0
\(172\) 21.8685 11.4656i 1.66745 0.874246i
\(173\) −1.08740 0.172227i −0.0826731 0.0130941i 0.114961 0.993370i \(-0.463326\pi\)
−0.197634 + 0.980276i \(0.563326\pi\)
\(174\) 0 0
\(175\) −4.82426 + 14.5146i −0.364680 + 1.09720i
\(176\) −0.574042 24.6136i −0.0432701 1.85532i
\(177\) 0 0
\(178\) −0.941609 + 0.486709i −0.0705766 + 0.0364804i
\(179\) 3.43461 10.5706i 0.256715 0.790086i −0.736772 0.676141i \(-0.763651\pi\)
0.993487 0.113945i \(-0.0363489\pi\)
\(180\) 0 0
\(181\) −3.67610 11.3139i −0.273242 0.840952i −0.989679 0.143301i \(-0.954228\pi\)
0.716437 0.697652i \(-0.245772\pi\)
\(182\) 14.7328 + 14.5620i 1.09207 + 1.07941i
\(183\) 0 0
\(184\) −5.54772 3.88427i −0.408984 0.286352i
\(185\) 8.50443 + 3.55621i 0.625258 + 0.261458i
\(186\) 0 0
\(187\) −3.79678 23.9719i −0.277648 1.75300i
\(188\) −7.69360 + 1.31067i −0.561114 + 0.0955905i
\(189\) 0 0
\(190\) 6.42373 + 2.64226i 0.466026 + 0.191690i
\(191\) 12.4784 17.1750i 0.902904 1.24274i −0.0666283 0.997778i \(-0.521224\pi\)
0.969532 0.244963i \(-0.0787758\pi\)
\(192\) 0 0
\(193\) 7.90062 + 7.90062i 0.568699 + 0.568699i 0.931764 0.363065i \(-0.118270\pi\)
−0.363065 + 0.931764i \(0.618270\pi\)
\(194\) −22.1764 + 7.34876i −1.59217 + 0.527610i
\(195\) 0 0
\(196\) 1.40483 4.50154i 0.100345 0.321539i
\(197\) −7.05910 13.8543i −0.502940 0.987076i −0.993301 0.115556i \(-0.963135\pi\)
0.490361 0.871520i \(-0.336865\pi\)
\(198\) 0 0
\(199\) 12.4250 0.880782 0.440391 0.897806i \(-0.354840\pi\)
0.440391 + 0.897806i \(0.354840\pi\)
\(200\) −14.1413 + 0.152176i −0.999942 + 0.0107605i
\(201\) 0 0
\(202\) −2.54584 + 16.7034i −0.179125 + 1.17525i
\(203\) −2.16122 4.24163i −0.151688 0.297704i
\(204\) 0 0
\(205\) 5.58688 + 13.6173i 0.390205 + 0.951074i
\(206\) −7.31202 + 2.42303i −0.509452 + 0.168821i
\(207\) 0 0
\(208\) −8.29509 + 17.2637i −0.575161 + 1.19702i
\(209\) 7.94662 10.9376i 0.549679 0.756569i
\(210\) 0 0
\(211\) −5.73506 7.89363i −0.394818 0.543420i 0.564616 0.825354i \(-0.309024\pi\)
−0.959434 + 0.281934i \(0.909024\pi\)
\(212\) −12.2687 + 2.09007i −0.842615 + 0.143547i
\(213\) 0 0
\(214\) 0.745742 0.548484i 0.0509779 0.0374936i
\(215\) −26.8651 + 6.35425i −1.83219 + 0.433356i
\(216\) 0 0
\(217\) 23.7637 + 12.1082i 1.61319 + 0.821960i
\(218\) −3.75751 3.71395i −0.254490 0.251541i
\(219\) 0 0
\(220\) −6.20366 + 26.8182i −0.418251 + 1.80808i
\(221\) −5.83461 + 17.9571i −0.392479 + 1.20792i
\(222\) 0 0
\(223\) 2.05317 12.9632i 0.137490 0.868081i −0.818462 0.574560i \(-0.805173\pi\)
0.955953 0.293520i \(-0.0948269\pi\)
\(224\) 17.2973 0.504313i 1.15572 0.0336958i
\(225\) 0 0
\(226\) −1.09402 + 0.00637766i −0.0727734 + 0.000424235i
\(227\) −20.8358 3.30006i −1.38292 0.219033i −0.579754 0.814791i \(-0.696852\pi\)
−0.803164 + 0.595759i \(0.796852\pi\)
\(228\) 0 0
\(229\) −10.1735 3.30556i −0.672281 0.218437i −0.0470685 0.998892i \(-0.514988\pi\)
−0.625213 + 0.780454i \(0.714988\pi\)
\(230\) 4.93162 + 5.74544i 0.325181 + 0.378843i
\(231\) 0 0
\(232\) 3.05749 3.16634i 0.200734 0.207880i
\(233\) −1.31152 + 2.57401i −0.0859207 + 0.168629i −0.929969 0.367639i \(-0.880166\pi\)
0.844048 + 0.536268i \(0.180166\pi\)
\(234\) 0 0
\(235\) 8.69639 + 0.713863i 0.567290 + 0.0465673i
\(236\) 11.1000 + 14.9092i 0.722549 + 0.970505i
\(237\) 0 0
\(238\) 16.8331 2.76678i 1.09113 0.179344i
\(239\) −10.0152 + 7.27645i −0.647828 + 0.470675i −0.862531 0.506005i \(-0.831122\pi\)
0.214703 + 0.976679i \(0.431122\pi\)
\(240\) 0 0
\(241\) −13.7385 9.98161i −0.884975 0.642972i 0.0495877 0.998770i \(-0.484209\pi\)
−0.934563 + 0.355798i \(0.884209\pi\)
\(242\) 33.9772 + 17.0635i 2.18414 + 1.09688i
\(243\) 0 0
\(244\) 1.67542 0.566056i 0.107258 0.0362380i
\(245\) −2.76986 + 4.48605i −0.176960 + 0.286603i
\(246\) 0 0
\(247\) −9.37111 + 4.77482i −0.596270 + 0.303815i
\(248\) −3.43114 + 24.4200i −0.217877 + 1.55067i
\(249\) 0 0
\(250\) 15.3586 + 3.75659i 0.971366 + 0.237588i
\(251\) 15.2933i 0.965305i 0.875812 + 0.482653i \(0.160327\pi\)
−0.875812 + 0.482653i \(0.839673\pi\)
\(252\) 0 0
\(253\) 13.1314 6.69076i 0.825561 0.420644i
\(254\) 2.66998 8.38333i 0.167529 0.526017i
\(255\) 0 0
\(256\) 5.64829 + 14.9699i 0.353018 + 0.935616i
\(257\) 5.22988 5.22988i 0.326231 0.326231i −0.524920 0.851151i \(-0.675905\pi\)
0.851151 + 0.524920i \(0.175905\pi\)
\(258\) 0 0
\(259\) 10.2023 + 7.41241i 0.633940 + 0.460584i
\(260\) 13.7717 16.3980i 0.854082 1.01696i
\(261\) 0 0
\(262\) −0.381407 2.32048i −0.0235634 0.143360i
\(263\) −28.6588 + 4.53910i −1.76718 + 0.279893i −0.953493 0.301415i \(-0.902541\pi\)
−0.813683 + 0.581309i \(0.802541\pi\)
\(264\) 0 0
\(265\) 13.8678 + 1.13837i 0.851889 + 0.0699293i
\(266\) 7.72002 + 5.54045i 0.473345 + 0.339707i
\(267\) 0 0
\(268\) −4.68343 + 4.79393i −0.286086 + 0.292836i
\(269\) −3.35427 + 1.08987i −0.204514 + 0.0664505i −0.409482 0.912318i \(-0.634291\pi\)
0.204969 + 0.978768i \(0.434291\pi\)
\(270\) 0 0
\(271\) −5.83745 1.89670i −0.354600 0.115216i 0.126300 0.991992i \(-0.459690\pi\)
−0.480900 + 0.876776i \(0.659690\pi\)
\(272\) 7.48643 + 13.8829i 0.453932 + 0.841775i
\(273\) 0 0
\(274\) 0.0306646 + 5.26020i 0.00185251 + 0.317781i
\(275\) 14.1559 27.3265i 0.853634 1.64785i
\(276\) 0 0
\(277\) 3.23161 20.4036i 0.194169 1.22593i −0.677384 0.735630i \(-0.736886\pi\)
0.871552 0.490302i \(-0.163114\pi\)
\(278\) 0.931858 + 1.80282i 0.0558891 + 0.108126i
\(279\) 0 0
\(280\) −18.8745 4.25035i −1.12797 0.254007i
\(281\) −5.87134 18.0701i −0.350255 1.07797i −0.958710 0.284385i \(-0.908211\pi\)
0.608455 0.793588i \(-0.291789\pi\)
\(282\) 0 0
\(283\) 13.1812 + 6.71617i 0.783543 + 0.399235i 0.799522 0.600637i \(-0.205086\pi\)
−0.0159788 + 0.999872i \(0.505086\pi\)
\(284\) 10.2380 + 7.25749i 0.607513 + 0.430653i
\(285\) 0 0
\(286\) −24.6951 33.5766i −1.46025 1.98543i
\(287\) 3.14999 + 19.8882i 0.185938 + 1.17397i
\(288\) 0 0
\(289\) −0.852962 1.17400i −0.0501742 0.0690589i
\(290\) −4.18959 + 2.58162i −0.246021 + 0.151598i
\(291\) 0 0
\(292\) −1.64545 0.814377i −0.0962929 0.0476578i
\(293\) 3.69461 + 3.69461i 0.215842 + 0.215842i 0.806743 0.590902i \(-0.201228\pi\)
−0.590902 + 0.806743i \(0.701228\pi\)
\(294\) 0 0
\(295\) −7.88808 19.2262i −0.459262 1.11939i
\(296\) −3.40866 + 11.1506i −0.198124 + 0.648116i
\(297\) 0 0
\(298\) 28.8743 + 4.40085i 1.67264 + 0.254934i
\(299\) −11.4650 −0.663040
\(300\) 0 0
\(301\) −37.7670 −2.17685
\(302\) 23.0367 + 3.51111i 1.32561 + 0.202042i
\(303\) 0 0
\(304\) −2.51945 + 8.41699i −0.144500 + 0.482747i
\(305\) −1.97162 + 0.148498i −0.112894 + 0.00850297i
\(306\) 0 0
\(307\) 5.17718 + 5.17718i 0.295477 + 0.295477i 0.839239 0.543762i \(-0.183001\pi\)
−0.543762 + 0.839239i \(0.683001\pi\)
\(308\) −16.7038 + 33.7501i −0.951788 + 1.92309i
\(309\) 0 0
\(310\) 10.4880 25.4979i 0.595677 1.44818i
\(311\) 2.74588 + 3.77938i 0.155705 + 0.214309i 0.879742 0.475452i \(-0.157715\pi\)
−0.724037 + 0.689761i \(0.757715\pi\)
\(312\) 0 0
\(313\) −3.67466 23.2009i −0.207704 1.31139i −0.842493 0.538707i \(-0.818913\pi\)
0.634789 0.772686i \(-0.281087\pi\)
\(314\) −5.97921 8.12959i −0.337426 0.458780i
\(315\) 0 0
\(316\) −11.1590 + 15.7417i −0.627742 + 0.885542i
\(317\) −4.91790 2.50580i −0.276217 0.140740i 0.310395 0.950608i \(-0.399539\pi\)
−0.586612 + 0.809868i \(0.699539\pi\)
\(318\) 0 0
\(319\) 2.95992 + 9.10970i 0.165724 + 0.510046i
\(320\) −1.96649 17.7801i −0.109930 0.993939i
\(321\) 0 0
\(322\) 4.75639 + 9.20193i 0.265063 + 0.512803i
\(323\) −1.35491 + 8.55459i −0.0753894 + 0.475990i
\(324\) 0 0
\(325\) −19.4633 + 13.9418i −1.07963 + 0.773352i
\(326\) 0.0793953 + 13.6195i 0.00439730 + 0.754313i
\(327\) 0 0
\(328\) −16.4384 + 8.74121i −0.907661 + 0.482653i
\(329\) 11.3529 + 3.68877i 0.625905 + 0.203369i
\(330\) 0 0
\(331\) 22.9947 7.47144i 1.26390 0.410668i 0.401020 0.916069i \(-0.368656\pi\)
0.862884 + 0.505402i \(0.168656\pi\)
\(332\) −10.4349 10.1944i −0.572689 0.559488i
\(333\) 0 0
\(334\) 21.4851 + 15.4193i 1.17561 + 0.843706i
\(335\) 6.40199 3.89358i 0.349778 0.212729i
\(336\) 0 0
\(337\) −25.8855 + 4.09986i −1.41007 + 0.223334i −0.814591 0.580035i \(-0.803039\pi\)
−0.595482 + 0.803369i \(0.703039\pi\)
\(338\) 2.27713 + 13.8540i 0.123859 + 0.753560i
\(339\) 0 0
\(340\) −4.25880 17.1126i −0.230966 0.928059i
\(341\) −43.4148 31.5427i −2.35104 1.70813i
\(342\) 0 0
\(343\) 10.0414 10.0414i 0.542184 0.542184i
\(344\) −11.3699 33.0168i −0.613023 1.78014i
\(345\) 0 0
\(346\) −0.472492 + 1.48355i −0.0254014 + 0.0797564i
\(347\) 17.8899 9.11535i 0.960379 0.489337i 0.0977699 0.995209i \(-0.468829\pi\)
0.862609 + 0.505872i \(0.168829\pi\)
\(348\) 0 0
\(349\) 1.31111i 0.0701821i −0.999384 0.0350910i \(-0.988828\pi\)
0.999384 0.0350910i \(-0.0111721\pi\)
\(350\) 19.2644 + 9.83749i 1.02972 + 0.525836i
\(351\) 0 0
\(352\) −34.5339 4.44226i −1.84066 0.236773i
\(353\) 26.1678 13.3332i 1.39277 0.709654i 0.413182 0.910649i \(-0.364417\pi\)
0.979592 + 0.200995i \(0.0644175\pi\)
\(354\) 0 0
\(355\) −9.07625 10.6996i −0.481717 0.567875i
\(356\) 0.479809 + 1.42014i 0.0254298 + 0.0752675i
\(357\) 0 0
\(358\) −14.0466 7.05426i −0.742386 0.372829i
\(359\) −2.37394 1.72477i −0.125292 0.0910299i 0.523374 0.852103i \(-0.324673\pi\)
−0.648666 + 0.761073i \(0.724673\pi\)
\(360\) 0 0
\(361\) 11.4682 8.33210i 0.603587 0.438532i
\(362\) −16.6009 + 2.72861i −0.872522 + 0.143413i
\(363\) 0 0
\(364\) 23.4980 17.4945i 1.23163 0.916961i
\(365\) 1.55636 + 1.33834i 0.0814637 + 0.0700518i
\(366\) 0 0
\(367\) 1.44407 2.83414i 0.0753796 0.147941i −0.850241 0.526394i \(-0.823544\pi\)
0.925621 + 0.378453i \(0.123544\pi\)
\(368\) −6.61261 + 6.92841i −0.344706 + 0.361169i
\(369\) 0 0
\(370\) 6.78400 11.1320i 0.352683 0.578725i
\(371\) 18.1039 + 5.88233i 0.939910 + 0.305395i
\(372\) 0 0
\(373\) 8.95416 + 1.41820i 0.463629 + 0.0734316i 0.383879 0.923383i \(-0.374588\pi\)
0.0797497 + 0.996815i \(0.474588\pi\)
\(374\) −34.3234 + 0.200090i −1.77482 + 0.0103464i
\(375\) 0 0
\(376\) 0.193013 + 11.0355i 0.00995386 + 0.569111i
\(377\) 1.16567 7.35977i 0.0600352 0.379047i
\(378\) 0 0
\(379\) −9.24861 + 28.4643i −0.475069 + 1.46211i 0.370795 + 0.928715i \(0.379085\pi\)
−0.845864 + 0.533398i \(0.820915\pi\)
\(380\) 5.06286 8.41778i 0.259719 0.431823i
\(381\) 0 0
\(382\) −21.3529 21.1054i −1.09251 1.07984i
\(383\) 15.4391 + 7.86660i 0.788900 + 0.401965i 0.801529 0.597956i \(-0.204020\pi\)
−0.0126293 + 0.999920i \(0.504020\pi\)
\(384\) 0 0
\(385\) 27.4508 31.9227i 1.39902 1.62693i
\(386\) 12.7291 9.36210i 0.647895 0.476518i
\(387\) 0 0
\(388\) 5.54859 + 32.5701i 0.281687 + 1.65349i
\(389\) 2.48759 + 3.42387i 0.126126 + 0.173597i 0.867410 0.497594i \(-0.165783\pi\)
−0.741284 + 0.671191i \(0.765783\pi\)
\(390\) 0 0
\(391\) −5.54961 + 7.63838i −0.280656 + 0.386290i
\(392\) −5.99411 2.92326i −0.302748 0.147647i
\(393\) 0 0
\(394\) −20.8734 + 6.91697i −1.05159 + 0.348472i
\(395\) 16.4515 13.9555i 0.827764 0.702176i
\(396\) 0 0
\(397\) −10.9532 21.4968i −0.549723 1.07889i −0.984009 0.178118i \(-0.942999\pi\)
0.434286 0.900775i \(-0.357001\pi\)
\(398\) 2.64758 17.3709i 0.132711 0.870726i
\(399\) 0 0
\(400\) −2.80056 + 19.8030i −0.140028 + 0.990148i
\(401\) −11.0326 −0.550942 −0.275471 0.961309i \(-0.588834\pi\)
−0.275471 + 0.961309i \(0.588834\pi\)
\(402\) 0 0
\(403\) 18.9528 + 37.1970i 0.944107 + 1.85291i
\(404\) 22.8100 + 7.11851i 1.13484 + 0.354159i
\(405\) 0 0
\(406\) −6.39061 + 2.11770i −0.317160 + 0.105100i
\(407\) −17.9420 17.9420i −0.889354 0.889354i
\(408\) 0 0
\(409\) 17.6926 24.3518i 0.874843 1.20412i −0.102980 0.994683i \(-0.532838\pi\)
0.977823 0.209435i \(-0.0671624\pi\)
\(410\) 20.2284 4.90919i 0.999010 0.242448i
\(411\) 0 0
\(412\) 1.82948 + 10.7390i 0.0901321 + 0.529073i
\(413\) −4.44744 28.0800i −0.218844 1.38173i
\(414\) 0 0
\(415\) 8.47510 + 13.9351i 0.416026 + 0.684048i
\(416\) 22.3683 + 15.2757i 1.09669 + 0.748955i
\(417\) 0 0
\(418\) −13.5982 13.4406i −0.665109 0.657399i
\(419\) −4.26390 13.1229i −0.208305 0.641097i −0.999561 0.0296124i \(-0.990573\pi\)
0.791256 0.611484i \(-0.209427\pi\)
\(420\) 0 0
\(421\) 4.03666 12.4236i 0.196735 0.605487i −0.803217 0.595686i \(-0.796880\pi\)
0.999952 0.00980083i \(-0.00311975\pi\)
\(422\) −12.2579 + 6.33598i −0.596705 + 0.308431i
\(423\) 0 0
\(424\) 0.307789 + 17.5978i 0.0149475 + 0.854624i
\(425\) −0.132643 + 19.7156i −0.00643413 + 0.956346i
\(426\) 0 0
\(427\) −2.67161 0.423141i −0.129288 0.0204772i
\(428\) −0.607911 1.15947i −0.0293845 0.0560452i
\(429\) 0 0
\(430\) 3.15910 + 38.9133i 0.152345 + 1.87657i
\(431\) −23.7995 + 7.73293i −1.14638 + 0.372482i −0.819779 0.572680i \(-0.805904\pi\)
−0.326603 + 0.945162i \(0.605904\pi\)
\(432\) 0 0
\(433\) −8.85686 + 17.3826i −0.425634 + 0.835353i 0.574228 + 0.818696i \(0.305302\pi\)
−0.999861 + 0.0166575i \(0.994698\pi\)
\(434\) 21.9918 30.6432i 1.05564 1.47092i
\(435\) 0 0
\(436\) −5.99303 + 4.46186i −0.287014 + 0.213684i
\(437\) −5.19451 + 0.822729i −0.248487 + 0.0393565i
\(438\) 0 0
\(439\) 5.96431 4.33333i 0.284661 0.206818i −0.436287 0.899808i \(-0.643707\pi\)
0.720948 + 0.692989i \(0.243707\pi\)
\(440\) 36.1718 + 14.3877i 1.72442 + 0.685907i
\(441\) 0 0
\(442\) 23.8620 + 11.9836i 1.13500 + 0.570001i
\(443\) −11.9556 + 11.9556i −0.568027 + 0.568027i −0.931575 0.363548i \(-0.881565\pi\)
0.363548 + 0.931575i \(0.381565\pi\)
\(444\) 0 0
\(445\) −0.125872 1.67121i −0.00596690 0.0792229i
\(446\) −17.6859 5.63274i −0.837454 0.266718i
\(447\) 0 0
\(448\) 2.98074 24.2903i 0.140827 1.14761i
\(449\) 17.9404i 0.846658i 0.905976 + 0.423329i \(0.139139\pi\)
−0.905976 + 0.423329i \(0.860861\pi\)
\(450\) 0 0
\(451\) 40.5157i 1.90781i
\(452\) −0.224204 + 1.53088i −0.0105457 + 0.0720065i
\(453\) 0 0
\(454\) −9.05351 + 28.4266i −0.424902 + 1.33413i
\(455\) −30.3020 + 12.4322i −1.42058 + 0.582832i
\(456\) 0 0
\(457\) 15.2228 15.2228i 0.712092 0.712092i −0.254880 0.966973i \(-0.582036\pi\)
0.966973 + 0.254880i \(0.0820360\pi\)
\(458\) −6.78921 + 13.5188i −0.317239 + 0.631693i
\(459\) 0 0
\(460\) 9.08337 5.67047i 0.423514 0.264387i
\(461\) 10.4823 7.61580i 0.488207 0.354703i −0.316287 0.948663i \(-0.602436\pi\)
0.804494 + 0.593960i \(0.202436\pi\)
\(462\) 0 0
\(463\) −1.76416 + 0.279416i −0.0819876 + 0.0129856i −0.197293 0.980344i \(-0.563215\pi\)
0.115306 + 0.993330i \(0.463215\pi\)
\(464\) −3.77526 4.94927i −0.175262 0.229764i
\(465\) 0 0
\(466\) 3.31917 + 2.38208i 0.153758 + 0.110348i
\(467\) 9.95367 19.5352i 0.460601 0.903980i −0.537552 0.843230i \(-0.680651\pi\)
0.998153 0.0607495i \(-0.0193491\pi\)
\(468\) 0 0
\(469\) 9.74913 3.16768i 0.450173 0.146270i
\(470\) 2.85110 12.0060i 0.131512 0.553797i
\(471\) 0 0
\(472\) 23.2093 12.3416i 1.06829 0.568070i
\(473\) 75.0548 + 11.8875i 3.45102 + 0.546588i
\(474\) 0 0
\(475\) −7.81785 + 7.71335i −0.358707 + 0.353913i
\(476\) −0.281265 24.1233i −0.0128918 1.10569i
\(477\) 0 0
\(478\) 8.03889 + 15.5524i 0.367690 + 0.711351i
\(479\) −1.58785 + 4.88691i −0.0725509 + 0.223289i −0.980756 0.195236i \(-0.937453\pi\)
0.908205 + 0.418525i \(0.137453\pi\)
\(480\) 0 0
\(481\) 6.09980 + 18.7733i 0.278127 + 0.855987i
\(482\) −16.8825 + 17.0804i −0.768975 + 0.777993i
\(483\) 0 0
\(484\) 31.0960 43.8665i 1.41345 1.99393i
\(485\) 3.02206 36.8152i 0.137225 1.67169i
\(486\) 0 0
\(487\) 2.07383 + 13.0936i 0.0939741 + 0.593329i 0.989069 + 0.147453i \(0.0471076\pi\)
−0.895095 + 0.445876i \(0.852892\pi\)
\(488\) −0.434377 2.46297i −0.0196633 0.111493i
\(489\) 0 0
\(490\) 5.68159 + 4.82836i 0.256668 + 0.218123i
\(491\) 4.99246 6.87153i 0.225307 0.310108i −0.681366 0.731943i \(-0.738614\pi\)
0.906673 + 0.421835i \(0.138614\pi\)
\(492\) 0 0
\(493\) −4.33908 4.33908i −0.195423 0.195423i
\(494\) 4.67868 + 14.1189i 0.210504 + 0.635239i
\(495\) 0 0
\(496\) 33.4097 + 10.0005i 1.50014 + 0.449036i
\(497\) −8.71420 17.1026i −0.390885 0.767156i
\(498\) 0 0
\(499\) −25.0509 −1.12143 −0.560716 0.828008i \(-0.689474\pi\)
−0.560716 + 0.828008i \(0.689474\pi\)
\(500\) 8.52467 20.6720i 0.381235 0.924478i
\(501\) 0 0
\(502\) 21.3811 + 3.25878i 0.954285 + 0.145446i
\(503\) 1.99779 + 3.92088i 0.0890770 + 0.174823i 0.931247 0.364389i \(-0.118722\pi\)
−0.842170 + 0.539212i \(0.818722\pi\)
\(504\) 0 0
\(505\) −22.7316 14.0353i −1.01154 0.624564i
\(506\) −6.55604 19.7842i −0.291451 0.879516i
\(507\) 0 0
\(508\) −11.1515 5.51918i −0.494769 0.244874i
\(509\) 21.3937 29.4458i 0.948257 1.30516i −0.00404015 0.999992i \(-0.501286\pi\)
0.952297 0.305172i \(-0.0987140\pi\)
\(510\) 0 0
\(511\) 1.65059 + 2.27184i 0.0730176 + 0.100500i
\(512\) 22.1325 4.70684i 0.978126 0.208015i
\(513\) 0 0
\(514\) −6.19732 8.42614i −0.273352 0.371661i
\(515\) 0.996436 12.1387i 0.0439082 0.534897i
\(516\) 0 0
\(517\) −21.4007 10.9042i −0.941200 0.479565i
\(518\) 12.5370 12.6840i 0.550845 0.557305i
\(519\) 0 0
\(520\) −19.9910 22.7479i −0.876665 0.997562i
\(521\) −6.05775 + 18.6438i −0.265395 + 0.816801i 0.726208 + 0.687476i \(0.241281\pi\)
−0.991602 + 0.129325i \(0.958719\pi\)
\(522\) 0 0
\(523\) 4.80315 30.3259i 0.210027 1.32606i −0.627052 0.778978i \(-0.715738\pi\)
0.837079 0.547082i \(-0.184262\pi\)
\(524\) −3.32546 + 0.0387731i −0.145273 + 0.00169381i
\(525\) 0 0
\(526\) 0.239210 + 41.0341i 0.0104301 + 1.78917i
\(527\) 33.9559 + 5.37809i 1.47914 + 0.234273i
\(528\) 0 0
\(529\) 16.4218 + 5.33577i 0.713991 + 0.231990i
\(530\) 4.54653 19.1455i 0.197489 0.831627i
\(531\) 0 0
\(532\) 9.39095 9.61252i 0.407149 0.416756i
\(533\) −14.3092 + 28.0834i −0.619801 + 1.21643i
\(534\) 0 0
\(535\) 0.336904 + 1.42440i 0.0145656 + 0.0615821i
\(536\) 5.70427 + 7.56927i 0.246387 + 0.326943i
\(537\) 0 0
\(538\) 0.808965 + 4.92174i 0.0348769 + 0.212191i
\(539\) 11.7410 8.53032i 0.505719 0.367427i
\(540\) 0 0
\(541\) −22.0987 16.0556i −0.950098 0.690286i 0.000732404 1.00000i \(-0.499767\pi\)
−0.950830 + 0.309713i \(0.899767\pi\)
\(542\) −3.89559 + 7.75699i −0.167330 + 0.333191i
\(543\) 0 0
\(544\) 21.0045 7.50830i 0.900560 0.321916i
\(545\) 7.72833 3.17076i 0.331045 0.135821i
\(546\) 0 0
\(547\) −20.0141 + 10.1977i −0.855739 + 0.436021i −0.826089 0.563539i \(-0.809439\pi\)
−0.0296502 + 0.999560i \(0.509439\pi\)
\(548\) 7.36066 + 1.07800i 0.314432 + 0.0460499i
\(549\) 0 0
\(550\) −35.1879 25.6138i −1.50042 1.09218i
\(551\) 3.41817i 0.145619i
\(552\) 0 0
\(553\) 26.2966 13.3988i 1.11825 0.569775i
\(554\) −27.8370 8.86571i −1.18268 0.376668i
\(555\) 0 0
\(556\) 2.71902 0.918647i 0.115312 0.0389593i
\(557\) 1.72925 1.72925i 0.0732707 0.0732707i −0.669522 0.742792i \(-0.733501\pi\)
0.742792 + 0.669522i \(0.233501\pi\)
\(558\) 0 0
\(559\) −47.8258 34.7475i −2.02282 1.46966i
\(560\) −9.96416 + 25.4822i −0.421063 + 1.07682i
\(561\) 0 0
\(562\) −26.5144 + 4.35805i −1.11844 + 0.183833i
\(563\) −10.7903 + 1.70902i −0.454758 + 0.0720266i −0.379612 0.925146i \(-0.623942\pi\)
−0.0751463 + 0.997173i \(0.523942\pi\)
\(564\) 0 0
\(565\) 0.667351 1.59592i 0.0280757 0.0671410i
\(566\) 12.1984 16.9971i 0.512737 0.714443i
\(567\) 0 0
\(568\) 12.3280 12.7669i 0.517273 0.535689i
\(569\) 40.3160 13.0995i 1.69014 0.549158i 0.703301 0.710892i \(-0.251709\pi\)
0.986834 + 0.161734i \(0.0517086\pi\)
\(570\) 0 0
\(571\) −22.9908 7.47016i −0.962135 0.312617i −0.214498 0.976724i \(-0.568812\pi\)
−0.747637 + 0.664108i \(0.768812\pi\)
\(572\) −52.2045 + 27.3708i −2.18278 + 1.14443i
\(573\) 0 0
\(574\) 28.4763 0.166004i 1.18858 0.00692887i
\(575\) −11.4106 + 3.62285i −0.475856 + 0.151083i
\(576\) 0 0
\(577\) −2.35827 + 14.8895i −0.0981760 + 0.619859i 0.888714 + 0.458463i \(0.151600\pi\)
−0.986890 + 0.161396i \(0.948400\pi\)
\(578\) −1.82309 + 0.942336i −0.0758304 + 0.0391960i
\(579\) 0 0
\(580\) 2.71653 + 6.40744i 0.112798 + 0.266054i
\(581\) 6.89505 + 21.2208i 0.286055 + 0.880387i
\(582\) 0 0
\(583\) −34.1267 17.3884i −1.41338 0.720155i
\(584\) −1.48918 + 2.12692i −0.0616226 + 0.0880127i
\(585\) 0 0
\(586\) 5.95259 4.37805i 0.245899 0.180856i
\(587\) 5.76093 + 36.3731i 0.237779 + 1.50128i 0.760815 + 0.648968i \(0.224799\pi\)
−0.523036 + 0.852310i \(0.675201\pi\)
\(588\) 0 0
\(589\) 11.2563 + 15.4929i 0.463807 + 0.638375i
\(590\) −28.5603 + 6.93125i −1.17581 + 0.285355i
\(591\) 0 0
\(592\) 14.8630 + 7.14157i 0.610865 + 0.293517i
\(593\) −31.3538 31.3538i −1.28755 1.28755i −0.936273 0.351274i \(-0.885749\pi\)
−0.351274 0.936273i \(-0.614251\pi\)
\(594\) 0 0
\(595\) −6.38480 + 26.2060i −0.261751 + 1.07434i
\(596\) 12.3054 39.4304i 0.504048 1.61513i
\(597\) 0 0
\(598\) −2.44303 + 16.0289i −0.0999029 + 0.655470i
\(599\) 44.9068 1.83484 0.917421 0.397917i \(-0.130267\pi\)
0.917421 + 0.397917i \(0.130267\pi\)
\(600\) 0 0
\(601\) 33.0206 1.34694 0.673468 0.739216i \(-0.264804\pi\)
0.673468 + 0.739216i \(0.264804\pi\)
\(602\) −8.04759 + 52.8008i −0.327995 + 2.15200i
\(603\) 0 0
\(604\) 9.81755 31.4586i 0.399470 1.28003i
\(605\) −45.8443 + 38.8888i −1.86384 + 1.58105i
\(606\) 0 0
\(607\) 25.5333 + 25.5333i 1.03636 + 1.03636i 0.999313 + 0.0370508i \(0.0117963\pi\)
0.0370508 + 0.999313i \(0.488204\pi\)
\(608\) 11.2307 + 5.31590i 0.455464 + 0.215588i
\(609\) 0 0
\(610\) −0.212512 + 2.78810i −0.00860437 + 0.112887i
\(611\) 10.9828 + 15.1165i 0.444315 + 0.611547i
\(612\) 0 0
\(613\) 1.23030 + 7.76779i 0.0496912 + 0.313738i 0.999997 + 0.00242026i \(0.000770394\pi\)
−0.950306 + 0.311318i \(0.899230\pi\)
\(614\) 8.34123 6.13487i 0.336625 0.247583i
\(615\) 0 0
\(616\) 43.6256 + 30.5447i 1.75773 + 1.23068i
\(617\) −7.71828 3.93266i −0.310726 0.158323i 0.291672 0.956518i \(-0.405788\pi\)
−0.602399 + 0.798195i \(0.705788\pi\)
\(618\) 0 0
\(619\) −1.99490 6.13966i −0.0801817 0.246774i 0.902928 0.429792i \(-0.141413\pi\)
−0.983109 + 0.183018i \(0.941413\pi\)
\(620\) −33.4129 20.0961i −1.34189 0.807080i
\(621\) 0 0
\(622\) 5.86894 3.03360i 0.235323 0.121636i
\(623\) 0.358669 2.26455i 0.0143698 0.0907272i
\(624\) 0 0
\(625\) −14.9654 + 20.0259i −0.598617 + 0.801035i
\(626\) −33.2195 + 0.193654i −1.32772 + 0.00773997i
\(627\) 0 0
\(628\) −12.6398 + 6.62705i −0.504383 + 0.264448i
\(629\) 15.4600 + 5.02325i 0.616429 + 0.200290i
\(630\) 0 0
\(631\) 13.7963 4.48269i 0.549222 0.178453i −0.0212442 0.999774i \(-0.506763\pi\)
0.570466 + 0.821321i \(0.306763\pi\)
\(632\) 19.6302 + 18.9553i 0.780848 + 0.754003i
\(633\) 0 0
\(634\) −4.55121 + 6.34162i −0.180752 + 0.251858i
\(635\) 10.5477 + 9.07015i 0.418574 + 0.359938i
\(636\) 0 0
\(637\) −11.1510 + 1.76614i −0.441818 + 0.0699770i
\(638\) 13.3667 2.19703i 0.529193 0.0869812i
\(639\) 0 0
\(640\) −25.2769 1.03940i −0.999156 0.0410858i
\(641\) 15.6806 + 11.3926i 0.619348 + 0.449982i 0.852694 0.522411i \(-0.174967\pi\)
−0.233346 + 0.972394i \(0.574967\pi\)
\(642\) 0 0
\(643\) 7.59067 7.59067i 0.299347 0.299347i −0.541411 0.840758i \(-0.682110\pi\)
0.840758 + 0.541411i \(0.182110\pi\)
\(644\) 13.8784 4.68896i 0.546887 0.184771i
\(645\) 0 0
\(646\) 11.6712 + 3.71712i 0.459197 + 0.146248i
\(647\) 21.3418 10.8742i 0.839034 0.427509i 0.0189968 0.999820i \(-0.493953\pi\)
0.820037 + 0.572310i \(0.193953\pi\)
\(648\) 0 0
\(649\) 57.2037i 2.24544i
\(650\) 15.3443 + 30.1818i 0.601851 + 1.18383i
\(651\) 0 0
\(652\) 19.0579 + 2.79111i 0.746364 + 0.109308i
\(653\) 9.13921 4.65666i 0.357645 0.182229i −0.265931 0.963992i \(-0.585679\pi\)
0.623576 + 0.781763i \(0.285679\pi\)
\(654\) 0 0
\(655\) 3.61256 + 0.880161i 0.141154 + 0.0343907i
\(656\) 8.71802 + 24.8447i 0.340382 + 0.970022i
\(657\) 0 0
\(658\) 7.57629 15.0861i 0.295355 0.588117i
\(659\) 34.9138 + 25.3664i 1.36005 + 0.988134i 0.998442 + 0.0558045i \(0.0177724\pi\)
0.361609 + 0.932330i \(0.382228\pi\)
\(660\) 0 0
\(661\) −8.24772 + 5.99232i −0.320799 + 0.233074i −0.736516 0.676420i \(-0.763531\pi\)
0.415717 + 0.909494i \(0.363531\pi\)
\(662\) −5.54574 33.7403i −0.215541 1.31135i
\(663\) 0 0
\(664\) −16.4759 + 12.4164i −0.639390 + 0.481850i
\(665\) −12.8369 + 7.80719i −0.497794 + 0.302750i
\(666\) 0 0
\(667\) 1.69163 3.32001i 0.0655002 0.128551i
\(668\) 26.1354 26.7520i 1.01121 1.03507i
\(669\) 0 0
\(670\) −4.07932 9.78008i −0.157598 0.377837i
\(671\) 5.17614 + 1.68183i 0.199823 + 0.0649263i
\(672\) 0 0
\(673\) −0.702378 0.111246i −0.0270747 0.00428821i 0.142882 0.989740i \(-0.454363\pi\)
−0.169957 + 0.985451i \(0.554363\pi\)
\(674\) 0.216062 + 37.0633i 0.00832240 + 1.42763i
\(675\) 0 0
\(676\) 19.8541 0.231488i 0.763619 0.00890340i
\(677\) 0.150123 0.947838i 0.00576969 0.0364284i −0.984636 0.174622i \(-0.944130\pi\)
0.990405 + 0.138194i \(0.0441296\pi\)
\(678\) 0 0
\(679\) 15.6160 48.0612i 0.599289 1.84442i
\(680\) −24.8320 + 2.30765i −0.952264 + 0.0884944i
\(681\) 0 0
\(682\) −53.3499 + 53.9756i −2.04287 + 2.06683i
\(683\) −31.1864 15.8902i −1.19331 0.608023i −0.259485 0.965747i \(-0.583553\pi\)
−0.933827 + 0.357724i \(0.883553\pi\)
\(684\) 0 0
\(685\) −7.67339 3.20871i −0.293185 0.122598i
\(686\) −11.8989 16.1782i −0.454301 0.617687i
\(687\) 0 0
\(688\) −48.5824 + 8.86047i −1.85219 + 0.337802i
\(689\) 17.5137 + 24.1056i 0.667220 + 0.918349i
\(690\) 0 0
\(691\) −13.7471 + 18.9213i −0.522964 + 0.719799i −0.986038 0.166521i \(-0.946747\pi\)
0.463074 + 0.886320i \(0.346747\pi\)
\(692\) 1.97343 + 0.976700i 0.0750185 + 0.0371286i
\(693\) 0 0
\(694\) −8.93180 26.9536i −0.339047 1.02314i
\(695\) −3.19971 + 0.240996i −0.121372 + 0.00914149i
\(696\) 0 0
\(697\) 11.7838 + 23.1270i 0.446343 + 0.875997i
\(698\) −1.83302 0.279378i −0.0693808 0.0105746i
\(699\) 0 0
\(700\) 17.8584 24.8367i 0.674985 0.938737i
\(701\) −41.4474 −1.56545 −0.782723 0.622370i \(-0.786170\pi\)
−0.782723 + 0.622370i \(0.786170\pi\)
\(702\) 0 0
\(703\) 4.11083 + 8.06796i 0.155043 + 0.304289i
\(704\) −13.5692 + 47.3341i −0.511410 + 1.78397i
\(705\) 0 0
\(706\) −13.0647 39.4255i −0.491697 1.48380i
\(707\) −25.8434 25.8434i −0.971941 0.971941i
\(708\) 0 0
\(709\) 13.9526 19.2041i 0.524001 0.721226i −0.462200 0.886776i \(-0.652940\pi\)
0.986201 + 0.165550i \(0.0529399\pi\)
\(710\) −16.8928 + 10.4093i −0.633975 + 0.390653i
\(711\) 0 0
\(712\) 2.08770 0.368193i 0.0782398 0.0137986i
\(713\) 3.26568 + 20.6187i 0.122301 + 0.772175i
\(714\) 0 0
\(715\) 64.1327 15.1689i 2.39843 0.567285i
\(716\) −12.8555 + 18.1349i −0.480431 + 0.677735i
\(717\) 0 0
\(718\) −2.91720 + 2.95141i −0.108869 + 0.110146i
\(719\) −0.654007 2.01283i −0.0243904 0.0750658i 0.938120 0.346309i \(-0.112565\pi\)
−0.962511 + 0.271243i \(0.912565\pi\)
\(720\) 0 0
\(721\) 5.14893 15.8468i 0.191756 0.590164i
\(722\) −9.20515 17.8087i −0.342580 0.662772i
\(723\) 0 0
\(724\) 0.277385 + 23.7906i 0.0103090 + 0.884170i
\(725\) −1.16548 7.69319i −0.0432849 0.285718i
\(726\) 0 0
\(727\) 12.6019 + 1.99595i 0.467379 + 0.0740255i 0.385682 0.922632i \(-0.373966\pi\)
0.0816966 + 0.996657i \(0.473966\pi\)
\(728\) −19.4514 36.5797i −0.720917 1.35573i
\(729\) 0 0
\(730\) 2.20273 1.89072i 0.0815265 0.0699786i
\(731\) −46.2999 + 15.0437i −1.71246 + 0.556413i
\(732\) 0 0
\(733\) −8.55620 + 16.7925i −0.316030 + 0.620245i −0.993310 0.115481i \(-0.963159\pi\)
0.677279 + 0.735726i \(0.263159\pi\)
\(734\) −3.65461 2.62282i −0.134894 0.0968099i
\(735\) 0 0
\(736\) 8.27734 + 10.7212i 0.305107 + 0.395189i
\(737\) −20.3716 + 3.22655i −0.750399 + 0.118852i
\(738\) 0 0
\(739\) −14.1263 + 10.2634i −0.519645 + 0.377544i −0.816470 0.577387i \(-0.804072\pi\)
0.296825 + 0.954932i \(0.404072\pi\)
\(740\) −14.1177 11.8566i −0.518978 0.435856i
\(741\) 0 0
\(742\) 12.0816 24.0571i 0.443529 0.883164i
\(743\) −15.1611 + 15.1611i −0.556207 + 0.556207i −0.928225 0.372019i \(-0.878666\pi\)
0.372019 + 0.928225i \(0.378666\pi\)
\(744\) 0 0
\(745\) −24.2621 + 39.2948i −0.888893 + 1.43965i
\(746\) 3.89074 12.2163i 0.142450 0.447272i
\(747\) 0 0
\(748\) −7.03409 + 48.0292i −0.257192 + 1.75612i
\(749\) 2.00242i 0.0731667i
\(750\) 0 0
\(751\) 5.28907i 0.193001i 0.995333 + 0.0965004i \(0.0307649\pi\)
−0.995333 + 0.0965004i \(0.969235\pi\)
\(752\) 15.4695 + 2.08165i 0.564113 + 0.0759101i
\(753\) 0 0
\(754\) −10.0411 3.19795i −0.365674 0.116462i
\(755\) −19.3569 + 31.3504i −0.704470 + 1.14096i
\(756\) 0 0
\(757\) 11.0805 11.0805i 0.402727 0.402727i −0.476466 0.879193i \(-0.658082\pi\)
0.879193 + 0.476466i \(0.158082\pi\)
\(758\) 37.8243 + 18.9955i 1.37384 + 0.689948i
\(759\) 0 0
\(760\) −10.6898 8.87193i −0.387760 0.321819i
\(761\) 4.11949 2.99298i 0.149331 0.108496i −0.510611 0.859812i \(-0.670581\pi\)
0.659942 + 0.751316i \(0.270581\pi\)
\(762\) 0 0
\(763\) 11.2873 1.78773i 0.408628 0.0647203i
\(764\) −34.0567 + 25.3555i −1.23213 + 0.917331i
\(765\) 0 0
\(766\) 14.2879 19.9086i 0.516242 0.719328i
\(767\) 20.2031 39.6508i 0.729491 1.43171i
\(768\) 0 0
\(769\) 34.6499 11.2584i 1.24951 0.405990i 0.391763 0.920066i \(-0.371865\pi\)
0.857744 + 0.514076i \(0.171865\pi\)
\(770\) −38.7808 45.1804i −1.39756 1.62819i
\(771\) 0 0
\(772\) −10.3765 19.7911i −0.373457 0.712297i
\(773\) −32.6907 5.17769i −1.17580 0.186229i −0.462197 0.886777i \(-0.652939\pi\)
−0.713604 + 0.700549i \(0.752939\pi\)
\(774\) 0 0
\(775\) 30.6168 + 31.0316i 1.09979 + 1.11469i
\(776\) 46.7175 0.817098i 1.67706 0.0293321i
\(777\) 0 0
\(778\) 5.31688 2.74824i 0.190619 0.0985293i
\(779\) −4.46787 + 13.7507i −0.160078 + 0.492670i
\(780\) 0 0
\(781\) 11.9346 + 36.7311i 0.427055 + 1.31434i
\(782\) 9.49644 + 9.38636i 0.339592 + 0.335656i
\(783\) 0 0
\(784\) −5.36418 + 7.75727i −0.191578 + 0.277046i
\(785\) 15.5279 3.67271i 0.554213 0.131085i
\(786\) 0 0
\(787\) −5.67435 35.8265i −0.202269 1.27708i −0.854658 0.519191i \(-0.826233\pi\)
0.652389 0.757884i \(-0.273767\pi\)
\(788\) 5.22257 + 30.6564i 0.186046 + 1.09209i
\(789\) 0 0
\(790\) −16.0051 25.9740i −0.569437 0.924114i
\(791\) 1.39100 1.91454i 0.0494581 0.0680732i
\(792\) 0 0
\(793\) −2.99386 2.99386i −0.106315 0.106315i
\(794\) −32.3879 + 10.7326i −1.14940 + 0.380886i
\(795\) 0 0
\(796\) −23.7216 7.40299i −0.840789 0.262392i
\(797\) 5.84580 + 11.4730i 0.207069 + 0.406395i 0.971062 0.238830i \(-0.0767637\pi\)
−0.763993 + 0.645225i \(0.776764\pi\)
\(798\) 0 0
\(799\) 15.3873 0.544362
\(800\) 27.0891 + 8.13509i 0.957745 + 0.287619i
\(801\) 0 0
\(802\) −2.35089 + 15.4243i −0.0830127 + 0.544652i
\(803\) −2.56515 5.03439i −0.0905221 0.177660i
\(804\) 0 0
\(805\) −16.3320 + 1.23009i −0.575627 + 0.0433550i
\(806\) 56.0425 18.5712i 1.97401 0.654142i
\(807\) 0 0
\(808\) 14.8127 30.3732i 0.521107 1.06852i
\(809\) −22.9504 + 31.5886i −0.806894 + 1.11059i 0.184901 + 0.982757i \(0.440804\pi\)
−0.991795 + 0.127837i \(0.959196\pi\)
\(810\) 0 0
\(811\) −3.23075 4.44674i −0.113447 0.156146i 0.748518 0.663115i \(-0.230766\pi\)
−0.861964 + 0.506969i \(0.830766\pi\)
\(812\) 1.59894 + 9.38575i 0.0561119 + 0.329375i
\(813\) 0 0
\(814\) −28.9074 + 21.2610i −1.01320 + 0.745198i
\(815\) −19.8676 8.30784i −0.695932 0.291011i
\(816\) 0 0
\(817\) −24.1621 12.3112i −0.845326 0.430715i
\(818\) −30.2754 29.9245i −1.05856 1.04628i
\(819\) 0 0
\(820\) −2.55301 29.3268i −0.0891549 1.02414i
\(821\) 6.85514 21.0979i 0.239246 0.736323i −0.757284 0.653086i \(-0.773474\pi\)
0.996530 0.0832374i \(-0.0265260\pi\)
\(822\) 0 0
\(823\) −3.98090 + 25.1344i −0.138765 + 0.876130i 0.815845 + 0.578271i \(0.196272\pi\)
−0.954610 + 0.297859i \(0.903728\pi\)
\(824\) 15.4037 0.269414i 0.536614 0.00938548i
\(825\) 0 0
\(826\) −40.2055 + 0.234379i −1.39893 + 0.00815510i
\(827\) −37.7357 5.97675i −1.31220 0.207832i −0.539167 0.842199i \(-0.681261\pi\)
−0.773032 + 0.634367i \(0.781261\pi\)
\(828\) 0 0
\(829\) −41.3764 13.4440i −1.43706 0.466929i −0.516081 0.856540i \(-0.672610\pi\)
−0.920980 + 0.389610i \(0.872610\pi\)
\(830\) 21.2882 8.87940i 0.738923 0.308208i
\(831\) 0 0
\(832\) 26.1229 28.0173i 0.905648 0.971325i
\(833\) −4.22093 + 8.28404i −0.146247 + 0.287025i
\(834\) 0 0
\(835\) −35.7256 + 21.7277i −1.23633 + 0.751918i
\(836\) −21.6884 + 16.1472i −0.750109 + 0.558463i
\(837\) 0 0
\(838\) −19.2553 + 3.16491i −0.665164 + 0.109330i
\(839\) 4.45082 3.23371i 0.153659 0.111640i −0.508299 0.861181i \(-0.669726\pi\)
0.661958 + 0.749541i \(0.269726\pi\)
\(840\) 0 0
\(841\) −21.5023 15.6223i −0.741457 0.538700i
\(842\) −16.5088 8.29080i −0.568932 0.285720i
\(843\) 0 0
\(844\) 6.24616 + 18.4875i 0.215002 + 0.636365i
\(845\) −21.5682 5.25485i −0.741967 0.180772i
\(846\) 0 0
\(847\) −73.2790 + 37.3375i −2.51790 + 1.28293i
\(848\) 24.6685 + 3.31952i 0.847119 + 0.113993i
\(849\) 0 0
\(850\) 27.5354 + 4.38654i 0.944458 + 0.150457i
\(851\) 9.87069i 0.338363i
\(852\) 0 0
\(853\) −4.42032 + 2.25226i −0.151349 + 0.0771161i −0.528025 0.849229i \(-0.677067\pi\)
0.376676 + 0.926345i \(0.377067\pi\)
\(854\) −1.16086 + 3.64493i −0.0397239 + 0.124727i
\(855\) 0 0
\(856\) −1.75056 + 0.602834i −0.0598329 + 0.0206045i
\(857\) 10.3827 10.3827i 0.354667 0.354667i −0.507176 0.861843i \(-0.669311\pi\)
0.861843 + 0.507176i \(0.169311\pi\)
\(858\) 0 0
\(859\) 34.9173 + 25.3689i 1.19136 + 0.865575i 0.993408 0.114636i \(-0.0365702\pi\)
0.197954 + 0.980211i \(0.436570\pi\)
\(860\) 55.0766 + 3.87522i 1.87810 + 0.132144i
\(861\) 0 0
\(862\) 5.73983 + 34.9211i 0.195500 + 1.18942i
\(863\) 52.7195 8.34994i 1.79459 0.284235i 0.831917 0.554899i \(-0.187243\pi\)
0.962674 + 0.270664i \(0.0872433\pi\)
\(864\) 0 0
\(865\) −1.86658 1.60510i −0.0634655 0.0545750i
\(866\) 22.4148 + 16.0865i 0.761684 + 0.546641i
\(867\) 0 0
\(868\) −38.1552 37.2757i −1.29507 1.26522i
\(869\) −56.4770 + 18.3505i −1.91585 + 0.622498i
\(870\) 0 0
\(871\) 15.2602 + 4.95832i 0.517071 + 0.168006i
\(872\) 4.96096 + 9.32942i 0.167999 + 0.315934i
\(873\) 0 0
\(874\) 0.0433577 + 7.43759i 0.00146660 + 0.251580i
\(875\) −26.2297 + 21.9484i −0.886726 + 0.741991i
\(876\) 0 0
\(877\) −8.50704 + 53.7113i −0.287262 + 1.81370i 0.247711 + 0.968834i \(0.420322\pi\)
−0.534973 + 0.844869i \(0.679678\pi\)
\(878\) −4.78738 9.26189i −0.161566 0.312574i
\(879\) 0 0
\(880\) 27.8227 47.5048i 0.937902 1.60139i
\(881\) −3.94503 12.1416i −0.132912 0.409060i 0.862348 0.506316i \(-0.168993\pi\)
−0.995259 + 0.0972568i \(0.968993\pi\)
\(882\) 0 0
\(883\) 13.0041 + 6.62594i 0.437624 + 0.222980i 0.658900 0.752231i \(-0.271022\pi\)
−0.221276 + 0.975211i \(0.571022\pi\)
\(884\) 21.8385 30.8071i 0.734508 1.03616i
\(885\) 0 0
\(886\) 14.1672 + 19.2623i 0.475955 + 0.647129i
\(887\) −6.89961 43.5624i −0.231666 1.46268i −0.779661 0.626202i \(-0.784609\pi\)
0.547995 0.836482i \(-0.315391\pi\)
\(888\) 0 0
\(889\) 11.1863 + 15.3966i 0.375177 + 0.516386i
\(890\) −2.36329 0.180133i −0.0792175 0.00603806i
\(891\) 0 0
\(892\) −11.6436 + 23.5259i −0.389856 + 0.787706i
\(893\) 6.06076 + 6.06076i 0.202816 + 0.202816i
\(894\) 0 0
\(895\) 18.9526 16.0771i 0.633515 0.537398i
\(896\) −33.3243 9.34317i −1.11329 0.312133i
\(897\) 0 0
\(898\) 25.0818 + 3.82283i 0.836992 + 0.127569i
\(899\) −13.5678 −0.452512
\(900\) 0 0
\(901\) 24.5374 0.817459
\(902\) −56.6436 8.63330i −1.88603 0.287457i
\(903\) 0 0
\(904\) 2.09250 + 0.639661i 0.0695955 + 0.0212748i
\(905\) 6.29673 25.8445i 0.209310 0.859099i
\(906\) 0 0
\(907\) 4.84284 + 4.84284i 0.160804 + 0.160804i 0.782923 0.622119i \(-0.213728\pi\)
−0.622119 + 0.782923i \(0.713728\pi\)
\(908\) 37.8132 + 18.7147i 1.25487 + 0.621070i
\(909\) 0 0
\(910\) 10.9242 + 45.0133i 0.362134 + 1.49218i
\(911\) −8.76056 12.0579i −0.290250 0.399495i 0.638845 0.769335i \(-0.279412\pi\)
−0.929095 + 0.369840i \(0.879412\pi\)
\(912\) 0 0
\(913\) −7.02319 44.3427i −0.232434 1.46753i
\(914\) −18.0388 24.5263i −0.596669 0.811257i
\(915\) 0 0
\(916\) 17.4536 + 12.3724i 0.576682 + 0.408797i
\(917\) 4.53231 + 2.30933i 0.149670 + 0.0762607i
\(918\) 0 0
\(919\) −7.90817 24.3388i −0.260866 0.802864i −0.992617 0.121292i \(-0.961296\pi\)
0.731751 0.681572i \(-0.238704\pi\)
\(920\) −5.99217 13.9075i −0.197556 0.458516i
\(921\) 0 0
\(922\) −8.41380 16.2777i −0.277094 0.536078i
\(923\) 4.70009 29.6752i 0.154705 0.976771i
\(924\) 0 0
\(925\) 12.0030 + 16.7567i 0.394658 + 0.550957i
\(926\) 0.0147252 + 2.52596i 0.000483899 + 0.0830081i
\(927\) 0 0
\(928\) −7.72387 + 4.22345i −0.253549 + 0.138641i
\(929\) 14.8414 + 4.82227i 0.486931 + 0.158214i 0.542186 0.840259i \(-0.317597\pi\)
−0.0552544 + 0.998472i \(0.517597\pi\)
\(930\) 0 0
\(931\) −4.92548 + 1.60039i −0.161426 + 0.0524505i
\(932\) 4.03758 4.13284i 0.132255 0.135376i
\(933\) 0 0
\(934\) −25.1905 18.0786i −0.824259 0.591549i
\(935\) 20.9372 50.0698i 0.684719 1.63746i
\(936\) 0 0
\(937\) 13.6370 2.15989i 0.445502 0.0705605i 0.0703466 0.997523i \(-0.477589\pi\)
0.375155 + 0.926962i \(0.377589\pi\)
\(938\) −2.35124 14.3049i −0.0767708 0.467073i
\(939\) 0 0
\(940\) −16.1777 6.54435i −0.527659 0.213453i
\(941\) −19.0308 13.8267i −0.620386 0.450737i 0.232671 0.972556i \(-0.425254\pi\)
−0.853056 + 0.521819i \(0.825254\pi\)
\(942\) 0 0
\(943\) −11.1447 + 11.1447i −0.362921 + 0.362921i
\(944\) −12.3089 35.0780i −0.400621 1.14169i
\(945\) 0 0
\(946\) 32.6126 102.399i 1.06033 3.32927i
\(947\) 22.7069 11.5698i 0.737877 0.375967i −0.0443045 0.999018i \(-0.514107\pi\)
0.782181 + 0.623051i \(0.214107\pi\)
\(948\) 0 0
\(949\) 4.39554i 0.142685i
\(950\) 9.11793 + 12.5735i 0.295825 + 0.407938i
\(951\) 0 0
\(952\) −33.7860 4.74710i −1.09501 0.153854i
\(953\) 18.7735 9.56559i 0.608134 0.309860i −0.122670 0.992448i \(-0.539146\pi\)
0.730804 + 0.682588i \(0.239146\pi\)
\(954\) 0 0
\(955\) 43.9180 18.0186i 1.42115 0.583067i
\(956\) 23.4563 7.92492i 0.758631 0.256310i
\(957\) 0 0
\(958\) 6.49388 + 3.26126i 0.209808 + 0.105366i
\(959\) −9.20535 6.68808i −0.297256 0.215969i
\(960\) 0 0
\(961\) 36.4169 26.4585i 1.17474 0.853499i
\(962\) 27.5461 4.52763i 0.888121 0.145977i
\(963\) 0 0
\(964\) 20.2822 + 27.2424i 0.653246 + 0.877419i
\(965\) 5.75064 + 24.3131i 0.185120 + 0.782668i
\(966\) 0 0
\(967\) −12.9924 + 25.4990i −0.417808 + 0.819994i 0.582168 + 0.813068i \(0.302204\pi\)
−0.999976 + 0.00692551i \(0.997796\pi\)
\(968\) −54.7022 52.8216i −1.75820 1.69775i
\(969\) 0 0
\(970\) −50.8263 12.0698i −1.63193 0.387539i
\(971\) 12.1175 + 3.93722i 0.388869 + 0.126351i 0.496925 0.867794i \(-0.334462\pi\)
−0.108056 + 0.994145i \(0.534462\pi\)
\(972\) 0 0
\(973\) −4.33573 0.686712i −0.138997 0.0220150i
\(974\) 18.7477 0.109290i 0.600715 0.00350189i
\(975\) 0 0
\(976\) −3.53596 + 0.0824661i −0.113183 + 0.00263967i
\(977\) −7.04607 + 44.4872i −0.225424 + 1.42327i 0.572200 + 0.820114i \(0.306090\pi\)
−0.797623 + 0.603156i \(0.793910\pi\)
\(978\) 0 0
\(979\) −1.42558 + 4.38747i −0.0455616 + 0.140224i
\(980\) 7.96104 6.91440i 0.254306 0.220872i
\(981\) 0 0
\(982\) −8.54305 8.44402i −0.272620 0.269460i
\(983\) 18.7209 + 9.53878i 0.597104 + 0.304240i 0.726298 0.687379i \(-0.241239\pi\)
−0.129194 + 0.991619i \(0.541239\pi\)
\(984\) 0 0
\(985\) 2.84450 34.6521i 0.0906332 1.10411i
\(986\) −6.99093 + 5.14174i −0.222637 + 0.163746i
\(987\) 0 0
\(988\) 20.7361 3.53258i 0.659705 0.112386i
\(989\) −17.3755 23.9153i −0.552509 0.760464i
\(990\) 0 0
\(991\) 6.89129 9.48504i 0.218909 0.301302i −0.685412 0.728155i \(-0.740378\pi\)
0.904321 + 0.426853i \(0.140378\pi\)
\(992\) 21.1005 44.5781i 0.669943 1.41536i
\(993\) 0 0
\(994\) −25.7674 + 8.53874i −0.817294 + 0.270832i
\(995\) 23.6400 + 14.5962i 0.749438 + 0.462731i
\(996\) 0 0
\(997\) 24.9244 + 48.9168i 0.789362 + 1.54921i 0.834998 + 0.550253i \(0.185469\pi\)
−0.0456360 + 0.998958i \(0.514531\pi\)
\(998\) −5.33798 + 35.0228i −0.168971 + 1.10863i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.bj.f.523.17 240
3.2 odd 2 300.2.w.a.223.14 yes 240
4.3 odd 2 inner 900.2.bj.f.523.18 240
12.11 even 2 300.2.w.a.223.13 yes 240
25.12 odd 20 inner 900.2.bj.f.487.18 240
75.62 even 20 300.2.w.a.187.13 240
100.87 even 20 inner 900.2.bj.f.487.17 240
300.287 odd 20 300.2.w.a.187.14 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
300.2.w.a.187.13 240 75.62 even 20
300.2.w.a.187.14 yes 240 300.287 odd 20
300.2.w.a.223.13 yes 240 12.11 even 2
300.2.w.a.223.14 yes 240 3.2 odd 2
900.2.bj.f.487.17 240 100.87 even 20 inner
900.2.bj.f.487.18 240 25.12 odd 20 inner
900.2.bj.f.523.17 240 1.1 even 1 trivial
900.2.bj.f.523.18 240 4.3 odd 2 inner