L(s) = 1 | + 14·19-s + 22·31-s + 13·49-s − 2·61-s + 8·79-s − 34·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 23·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯ |
L(s) = 1 | + 3.21·19-s + 3.95·31-s + 13/7·49-s − 0.256·61-s + 0.900·79-s − 3.25·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.76·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + ⋯ |
Λ(s)=(=(810000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(810000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
810000
= 24⋅34⋅54
|
Sign: |
1
|
Analytic conductor: |
51.6463 |
Root analytic conductor: |
2.68077 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 810000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.541519372 |
L(21) |
≈ |
2.541519372 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | C22 | 1−13T2+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C22 | 1+23T2+p2T4 |
| 17 | C2 | (1−pT2)2 |
| 19 | C2 | (1−7T+pT2)2 |
| 23 | C2 | (1−pT2)2 |
| 29 | C2 | (1+pT2)2 |
| 31 | C2 | (1−11T+pT2)2 |
| 37 | C22 | 1+26T2+p2T4 |
| 41 | C2 | (1+pT2)2 |
| 43 | C22 | 1+83T2+p2T4 |
| 47 | C2 | (1−pT2)2 |
| 53 | C2 | (1−pT2)2 |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1+T+pT2)2 |
| 67 | C22 | 1−13T2+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C22 | 1−46T2+p2T4 |
| 79 | C2 | (1−4T+pT2)2 |
| 83 | C2 | (1−pT2)2 |
| 89 | C2 | (1+pT2)2 |
| 97 | C22 | 1+167T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.14112622647243967370640998702, −9.977823893178558580778723791723, −9.450385650233187244685527500150, −9.261099106086246421849458954556, −8.564714861902500639015066645338, −8.219346884431257290134254543856, −7.71144063614632070805021969707, −7.50897121623622279840396021121, −6.84483149746988145169386310723, −6.57066381528960798485575627732, −5.90331239581687517956669189722, −5.57020635769809955483359577206, −4.94728532785869565693476466944, −4.72051500497346810470198581000, −3.96035182333274418898081674294, −3.46402868061878143943868317573, −2.67339752721048925628385533629, −2.66349277684815050575823334823, −1.26319395930967265118682164881, −0.925200601601659279689990278024,
0.925200601601659279689990278024, 1.26319395930967265118682164881, 2.66349277684815050575823334823, 2.67339752721048925628385533629, 3.46402868061878143943868317573, 3.96035182333274418898081674294, 4.72051500497346810470198581000, 4.94728532785869565693476466944, 5.57020635769809955483359577206, 5.90331239581687517956669189722, 6.57066381528960798485575627732, 6.84483149746988145169386310723, 7.50897121623622279840396021121, 7.71144063614632070805021969707, 8.219346884431257290134254543856, 8.564714861902500639015066645338, 9.261099106086246421849458954556, 9.450385650233187244685527500150, 9.977823893178558580778723791723, 10.14112622647243967370640998702