Properties

Label 900.2.d.d
Level $900$
Weight $2$
Character orbit 900.d
Analytic conductor $7.187$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(649,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{7} - 7 i q^{13} + 7 q^{19} + 11 q^{31} + 10 i q^{37} - 13 i q^{43} + 6 q^{49} - q^{61} - 11 i q^{67} - 10 i q^{73} + 4 q^{79} + 7 q^{91} + 19 i q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14 q^{19} + 22 q^{31} + 12 q^{49} - 2 q^{61} + 8 q^{79} + 14 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
649.1
1.00000i
1.00000i
0 0 0 0 0 1.00000i 0 0 0
649.2 0 0 0 0 0 1.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 900.2.d.d 2
3.b odd 2 1 CM 900.2.d.d 2
4.b odd 2 1 3600.2.f.h 2
5.b even 2 1 inner 900.2.d.d 2
5.c odd 4 1 900.2.a.d 1
5.c odd 4 1 900.2.a.f yes 1
12.b even 2 1 3600.2.f.h 2
15.d odd 2 1 inner 900.2.d.d 2
15.e even 4 1 900.2.a.d 1
15.e even 4 1 900.2.a.f yes 1
20.d odd 2 1 3600.2.f.h 2
20.e even 4 1 3600.2.a.q 1
20.e even 4 1 3600.2.a.x 1
60.h even 2 1 3600.2.f.h 2
60.l odd 4 1 3600.2.a.q 1
60.l odd 4 1 3600.2.a.x 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
900.2.a.d 1 5.c odd 4 1
900.2.a.d 1 15.e even 4 1
900.2.a.f yes 1 5.c odd 4 1
900.2.a.f yes 1 15.e even 4 1
900.2.d.d 2 1.a even 1 1 trivial
900.2.d.d 2 3.b odd 2 1 CM
900.2.d.d 2 5.b even 2 1 inner
900.2.d.d 2 15.d odd 2 1 inner
3600.2.a.q 1 20.e even 4 1
3600.2.a.q 1 60.l odd 4 1
3600.2.a.x 1 20.e even 4 1
3600.2.a.x 1 60.l odd 4 1
3600.2.f.h 2 4.b odd 2 1
3600.2.f.h 2 12.b even 2 1
3600.2.f.h 2 20.d odd 2 1
3600.2.f.h 2 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(900, [\chi])\):

\( T_{7}^{2} + 1 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 49 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T - 7)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T - 11)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 100 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 169 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T + 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 121 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 100 \) Copy content Toggle raw display
$79$ \( (T - 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 361 \) Copy content Toggle raw display
show more
show less