Properties

Label 3600.2.a.q
Level 36003600
Weight 22
Character orbit 3600.a
Self dual yes
Analytic conductor 28.74628.746
Analytic rank 00
Dimension 11
CM discriminant -3
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3600,2,Mod(1,3600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3600.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3600=243252 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 28.746144727728.7461447277
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 900)
Fricke sign: 1-1
Sato-Tate group: N(U(1))N(\mathrm{U}(1))

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == qq7+7q13+7q1911q31+10q3713q436q49q61+11q67+10q73+4q797q91+19q97+O(q100) q - q^{7} + 7 q^{13} + 7 q^{19} - 11 q^{31} + 10 q^{37} - 13 q^{43} - 6 q^{49} - q^{61} + 11 q^{67} + 10 q^{73} + 4 q^{79} - 7 q^{91} + 19 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 0 0 0 −1.00000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
55 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3600.2.a.q 1
3.b odd 2 1 CM 3600.2.a.q 1
4.b odd 2 1 900.2.a.f yes 1
5.b even 2 1 3600.2.a.x 1
5.c odd 4 2 3600.2.f.h 2
12.b even 2 1 900.2.a.f yes 1
15.d odd 2 1 3600.2.a.x 1
15.e even 4 2 3600.2.f.h 2
20.d odd 2 1 900.2.a.d 1
20.e even 4 2 900.2.d.d 2
60.h even 2 1 900.2.a.d 1
60.l odd 4 2 900.2.d.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
900.2.a.d 1 20.d odd 2 1
900.2.a.d 1 60.h even 2 1
900.2.a.f yes 1 4.b odd 2 1
900.2.a.f yes 1 12.b even 2 1
900.2.d.d 2 20.e even 4 2
900.2.d.d 2 60.l odd 4 2
3600.2.a.q 1 1.a even 1 1 trivial
3600.2.a.q 1 3.b odd 2 1 CM
3600.2.a.x 1 5.b even 2 1
3600.2.a.x 1 15.d odd 2 1
3600.2.f.h 2 5.c odd 4 2
3600.2.f.h 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(3600))S_{2}^{\mathrm{new}}(\Gamma_0(3600)):

T7+1 T_{7} + 1 Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display
T137 T_{13} - 7 Copy content Toggle raw display
T17 T_{17} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T+1 T + 1 Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T7 T - 7 Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T7 T - 7 Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T+11 T + 11 Copy content Toggle raw display
3737 T10 T - 10 Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T+13 T + 13 Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T+1 T + 1 Copy content Toggle raw display
6767 T11 T - 11 Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T10 T - 10 Copy content Toggle raw display
7979 T4 T - 4 Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T19 T - 19 Copy content Toggle raw display
show more
show less