L(s) = 1 | + (−1 − i)2-s + 2i·4-s + (−3 − 3i)7-s + (2 − 2i)8-s + 6i·14-s − 4·16-s + (−1 + i)23-s + (6 − 6i)28-s + 6i·29-s + (4 + 4i)32-s − 12·41-s + (−9 + 9i)43-s + 2·46-s + (−7 − 7i)47-s + 11i·49-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)2-s + i·4-s + (−1.13 − 1.13i)7-s + (0.707 − 0.707i)8-s + 1.60i·14-s − 16-s + (−0.208 + 0.208i)23-s + (1.13 − 1.13i)28-s + 1.11i·29-s + (0.707 + 0.707i)32-s − 1.87·41-s + (−1.37 + 1.37i)43-s + 0.294·46-s + (−1.02 − 1.02i)47-s + 1.57i·49-s + ⋯ |
Λ(s)=(=(900s/2ΓC(s)L(s)(−0.525−0.850i)Λ(2−s)
Λ(s)=(=(900s/2ΓC(s+1/2)L(s)(−0.525−0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
900
= 22⋅32⋅52
|
Sign: |
−0.525−0.850i
|
Analytic conductor: |
7.18653 |
Root analytic conductor: |
2.68077 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ900(343,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 900, ( :1/2), −0.525−0.850i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1+i)T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+(3+3i)T+7iT2 |
| 11 | 1−11T2 |
| 13 | 1+13iT2 |
| 17 | 1−17iT2 |
| 19 | 1+19T2 |
| 23 | 1+(1−i)T−23iT2 |
| 29 | 1−6iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1−37iT2 |
| 41 | 1+12T+41T2 |
| 43 | 1+(9−9i)T−43iT2 |
| 47 | 1+(7+7i)T+47iT2 |
| 53 | 1+53iT2 |
| 59 | 1+59T2 |
| 61 | 1+8T+61T2 |
| 67 | 1+(3+3i)T+67iT2 |
| 71 | 1−71T2 |
| 73 | 1+73iT2 |
| 79 | 1+79T2 |
| 83 | 1+(11−11i)T−83iT2 |
| 89 | 1−6iT−89T2 |
| 97 | 1−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.840646564602905882016952216415, −8.874163464935605254975256118737, −7.980327520811191375411657917353, −7.04592510983331967017197185623, −6.48625854283405323859461544741, −4.86774410197011933552504603467, −3.69955452081662181540677535696, −3.09261678250413111831336110729, −1.49522296593912016389884812796, 0,
1.97857098273931622214722382350, 3.22214226622701215711523678670, 4.76605875059416824221828872885, 5.79875495962519145827089414206, 6.36111142548848000335399366700, 7.22506277653226747992125334886, 8.339160821893038661546252725528, 8.882969361526073725695830923503, 9.783177142889602176615982615267