Properties

Label 2-30e2-20.3-c1-0-37
Degree $2$
Conductor $900$
Sign $-0.525 - 0.850i$
Analytic cond. $7.18653$
Root an. cond. $2.68077$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 − i)2-s + 2i·4-s + (−3 − 3i)7-s + (2 − 2i)8-s + 6i·14-s − 4·16-s + (−1 + i)23-s + (6 − 6i)28-s + 6i·29-s + (4 + 4i)32-s − 12·41-s + (−9 + 9i)43-s + 2·46-s + (−7 − 7i)47-s + 11i·49-s + ⋯
L(s)  = 1  + (−0.707 − 0.707i)2-s + i·4-s + (−1.13 − 1.13i)7-s + (0.707 − 0.707i)8-s + 1.60i·14-s − 16-s + (−0.208 + 0.208i)23-s + (1.13 − 1.13i)28-s + 1.11i·29-s + (0.707 + 0.707i)32-s − 1.87·41-s + (−1.37 + 1.37i)43-s + 0.294·46-s + (−1.02 − 1.02i)47-s + 1.57i·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.525 - 0.850i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.525 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-0.525 - 0.850i$
Analytic conductor: \(7.18653\)
Root analytic conductor: \(2.68077\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{900} (343, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(1\)
Selberg data: \((2,\ 900,\ (\ :1/2),\ -0.525 - 0.850i)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1 + i)T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + (3 + 3i)T + 7iT^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 + 13iT^{2} \)
17 \( 1 - 17iT^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + (1 - i)T - 23iT^{2} \)
29 \( 1 - 6iT - 29T^{2} \)
31 \( 1 - 31T^{2} \)
37 \( 1 - 37iT^{2} \)
41 \( 1 + 12T + 41T^{2} \)
43 \( 1 + (9 - 9i)T - 43iT^{2} \)
47 \( 1 + (7 + 7i)T + 47iT^{2} \)
53 \( 1 + 53iT^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 8T + 61T^{2} \)
67 \( 1 + (3 + 3i)T + 67iT^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 + 73iT^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + (11 - 11i)T - 83iT^{2} \)
89 \( 1 - 6iT - 89T^{2} \)
97 \( 1 - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.840646564602905882016952216415, −8.874163464935605254975256118737, −7.980327520811191375411657917353, −7.04592510983331967017197185623, −6.48625854283405323859461544741, −4.86774410197011933552504603467, −3.69955452081662181540677535696, −3.09261678250413111831336110729, −1.49522296593912016389884812796, 0, 1.97857098273931622214722382350, 3.22214226622701215711523678670, 4.76605875059416824221828872885, 5.79875495962519145827089414206, 6.36111142548848000335399366700, 7.22506277653226747992125334886, 8.339160821893038661546252725528, 8.882969361526073725695830923503, 9.783177142889602176615982615267

Graph of the $Z$-function along the critical line