Properties

Label 900.2.k.a.343.1
Level $900$
Weight $2$
Character 900.343
Analytic conductor $7.187$
Analytic rank $1$
Dimension $2$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(307,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 100)
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 343.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 900.343
Dual form 900.2.k.a.307.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +2.00000i q^{4} +(-3.00000 - 3.00000i) q^{7} +(2.00000 - 2.00000i) q^{8} +6.00000i q^{14} -4.00000 q^{16} +(-1.00000 + 1.00000i) q^{23} +(6.00000 - 6.00000i) q^{28} +6.00000i q^{29} +(4.00000 + 4.00000i) q^{32} -12.0000 q^{41} +(-9.00000 + 9.00000i) q^{43} +2.00000 q^{46} +(-7.00000 - 7.00000i) q^{47} +11.0000i q^{49} -12.0000 q^{56} +(6.00000 - 6.00000i) q^{58} -8.00000 q^{61} -8.00000i q^{64} +(-3.00000 - 3.00000i) q^{67} +(12.0000 + 12.0000i) q^{82} +(-11.0000 + 11.0000i) q^{83} +18.0000 q^{86} +6.00000i q^{89} +(-2.00000 - 2.00000i) q^{92} +14.0000i q^{94} +(11.0000 - 11.0000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 6 q^{7} + 4 q^{8} - 8 q^{16} - 2 q^{23} + 12 q^{28} + 8 q^{32} - 24 q^{41} - 18 q^{43} + 4 q^{46} - 14 q^{47} - 24 q^{56} + 12 q^{58} - 16 q^{61} - 6 q^{67} + 24 q^{82} - 22 q^{83} + 36 q^{86}+ \cdots + 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.707107 0.707107i
\(3\) 0 0
\(4\) 2.00000i 1.00000i
\(5\) 0 0
\(6\) 0 0
\(7\) −3.00000 3.00000i −1.13389 1.13389i −0.989524 0.144370i \(-0.953885\pi\)
−0.144370 0.989524i \(-0.546115\pi\)
\(8\) 2.00000 2.00000i 0.707107 0.707107i
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(14\) 6.00000i 1.60357i
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 + 1.00000i −0.208514 + 0.208514i −0.803636 0.595121i \(-0.797104\pi\)
0.595121 + 0.803636i \(0.297104\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 6.00000 6.00000i 1.13389 1.13389i
\(29\) 6.00000i 1.11417i 0.830455 + 0.557086i \(0.188081\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 4.00000 + 4.00000i 0.707107 + 0.707107i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −12.0000 −1.87409 −0.937043 0.349215i \(-0.886448\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) 0 0
\(43\) −9.00000 + 9.00000i −1.37249 + 1.37249i −0.515745 + 0.856742i \(0.672485\pi\)
−0.856742 + 0.515745i \(0.827515\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 2.00000 0.294884
\(47\) −7.00000 7.00000i −1.02105 1.02105i −0.999774 0.0212814i \(-0.993225\pi\)
−0.0212814 0.999774i \(-0.506775\pi\)
\(48\) 0 0
\(49\) 11.0000i 1.57143i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −12.0000 −1.60357
\(57\) 0 0
\(58\) 6.00000 6.00000i 0.787839 0.787839i
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) −3.00000 3.00000i −0.366508 0.366508i 0.499694 0.866202i \(-0.333446\pi\)
−0.866202 + 0.499694i \(0.833446\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 12.0000 + 12.0000i 1.32518 + 1.32518i
\(83\) −11.0000 + 11.0000i −1.20741 + 1.20741i −0.235543 + 0.971864i \(0.575687\pi\)
−0.971864 + 0.235543i \(0.924313\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 18.0000 1.94099
\(87\) 0 0
\(88\) 0 0
\(89\) 6.00000i 0.635999i 0.948091 + 0.317999i \(0.103011\pi\)
−0.948091 + 0.317999i \(0.896989\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.00000 2.00000i −0.208514 0.208514i
\(93\) 0 0
\(94\) 14.0000i 1.44399i
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(98\) 11.0000 11.0000i 1.11117 1.11117i
\(99\) 0 0
\(100\) 0 0
\(101\) 18.0000 1.79107 0.895533 0.444994i \(-0.146794\pi\)
0.895533 + 0.444994i \(0.146794\pi\)
\(102\) 0 0
\(103\) −9.00000 + 9.00000i −0.886796 + 0.886796i −0.994214 0.107418i \(-0.965742\pi\)
0.107418 + 0.994214i \(0.465742\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.0000 + 13.0000i 1.25676 + 1.25676i 0.952632 + 0.304125i \(0.0983642\pi\)
0.304125 + 0.952632i \(0.401636\pi\)
\(108\) 0 0
\(109\) 16.0000i 1.53252i −0.642529 0.766261i \(-0.722115\pi\)
0.642529 0.766261i \(-0.277885\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 12.0000 + 12.0000i 1.13389 + 1.13389i
\(113\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −12.0000 −1.11417
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 8.00000 + 8.00000i 0.724286 + 0.724286i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −3.00000 3.00000i −0.266207 0.266207i 0.561363 0.827570i \(-0.310277\pi\)
−0.827570 + 0.561363i \(0.810277\pi\)
\(128\) −8.00000 + 8.00000i −0.707107 + 0.707107i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.00000i 0.518321i
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 24.0000i 1.96616i −0.183186 0.983078i \(-0.558641\pi\)
0.183186 0.983078i \(-0.441359\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) −9.00000 + 9.00000i −0.704934 + 0.704934i −0.965465 0.260531i \(-0.916102\pi\)
0.260531 + 0.965465i \(0.416102\pi\)
\(164\) 24.0000i 1.87409i
\(165\) 0 0
\(166\) 22.0000 1.70753
\(167\) −17.0000 17.0000i −1.31550 1.31550i −0.917298 0.398202i \(-0.869634\pi\)
−0.398202 0.917298i \(-0.630366\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) 0 0
\(172\) −18.0000 18.0000i −1.37249 1.37249i
\(173\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 6.00000 6.00000i 0.449719 0.449719i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.00000i 0.294884i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 14.0000 14.0000i 1.02105 1.02105i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −22.0000 −1.57143
\(197\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −18.0000 18.0000i −1.26648 1.26648i
\(203\) 18.0000 18.0000i 1.26335 1.26335i
\(204\) 0 0
\(205\) 0 0
\(206\) 18.0000 1.25412
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 26.0000i 1.77732i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −16.0000 + 16.0000i −1.08366 + 1.08366i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 21.0000 21.0000i 1.40626 1.40626i 0.628263 0.778001i \(-0.283766\pi\)
0.778001 0.628263i \(-0.216234\pi\)
\(224\) 24.0000i 1.60357i
\(225\) 0 0
\(226\) 0 0
\(227\) −7.00000 7.00000i −0.464606 0.464606i 0.435556 0.900162i \(-0.356552\pi\)
−0.900162 + 0.435556i \(0.856552\pi\)
\(228\) 0 0
\(229\) 14.0000i 0.925146i 0.886581 + 0.462573i \(0.153074\pi\)
−0.886581 + 0.462573i \(0.846926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 12.0000 + 12.0000i 0.787839 + 0.787839i
\(233\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −28.0000 −1.80364 −0.901819 0.432113i \(-0.857768\pi\)
−0.901819 + 0.432113i \(0.857768\pi\)
\(242\) −11.0000 11.0000i −0.707107 0.707107i
\(243\) 0 0
\(244\) 16.0000i 1.02430i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 6.00000i 0.376473i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.0000 + 11.0000i −0.678289 + 0.678289i −0.959613 0.281324i \(-0.909226\pi\)
0.281324 + 0.959613i \(0.409226\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 6.00000 6.00000i 0.366508 0.366508i
\(269\) 24.0000i 1.46331i −0.681677 0.731653i \(-0.738749\pi\)
0.681677 0.731653i \(-0.261251\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 0 0
\(283\) 21.0000 21.0000i 1.24832 1.24832i 0.291859 0.956461i \(-0.405726\pi\)
0.956461 0.291859i \(-0.0942738\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 36.0000 + 36.0000i 2.12501 + 2.12501i
\(288\) 0 0
\(289\) 17.0000i 1.00000i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −24.0000 + 24.0000i −1.39028 + 1.39028i
\(299\) 0 0
\(300\) 0 0
\(301\) 54.0000 3.11251
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −3.00000 3.00000i −0.171219 0.171219i 0.616296 0.787515i \(-0.288633\pi\)
−0.787515 + 0.616296i \(0.788633\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) −6.00000 6.00000i −0.334367 0.334367i
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 18.0000 0.996928
\(327\) 0 0
\(328\) −24.0000 + 24.0000i −1.32518 + 1.32518i
\(329\) 42.0000i 2.31553i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) −22.0000 22.0000i −1.20741 1.20741i
\(333\) 0 0
\(334\) 34.0000i 1.86040i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(338\) −13.0000 + 13.0000i −0.707107 + 0.707107i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) 36.0000i 1.94099i
\(345\) 0 0
\(346\) 0 0
\(347\) −17.0000 17.0000i −0.912608 0.912608i 0.0838690 0.996477i \(-0.473272\pi\)
−0.996477 + 0.0838690i \(0.973272\pi\)
\(348\) 0 0
\(349\) 26.0000i 1.39175i −0.718164 0.695874i \(-0.755017\pi\)
0.718164 0.695874i \(-0.244983\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −12.0000 −0.635999
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) −2.00000 2.00000i −0.105118 0.105118i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 27.0000 + 27.0000i 1.40939 + 1.40939i 0.763055 + 0.646333i \(0.223698\pi\)
0.646333 + 0.763055i \(0.276302\pi\)
\(368\) 4.00000 4.00000i 0.208514 0.208514i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −28.0000 −1.44399
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 19.0000 19.0000i 0.970855 0.970855i −0.0287325 0.999587i \(-0.509147\pi\)
0.999587 + 0.0287325i \(0.00914709\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 24.0000i 1.21685i −0.793612 0.608424i \(-0.791802\pi\)
0.793612 0.608424i \(-0.208198\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 22.0000 + 22.0000i 1.11117 + 1.11117i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 36.0000i 1.79107i
\(405\) 0 0
\(406\) −36.0000 −1.78665
\(407\) 0 0
\(408\) 0 0
\(409\) 4.00000i 0.197787i 0.995098 + 0.0988936i \(0.0315304\pi\)
−0.995098 + 0.0988936i \(0.968470\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −18.0000 18.0000i −0.886796 0.886796i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −8.00000 −0.389896 −0.194948 0.980814i \(-0.562454\pi\)
−0.194948 + 0.980814i \(0.562454\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 24.0000 + 24.0000i 1.16144 + 1.16144i
\(428\) −26.0000 + 26.0000i −1.25676 + 1.25676i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 32.0000 1.53252
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 29.0000 29.0000i 1.37783 1.37783i 0.529558 0.848274i \(-0.322358\pi\)
0.848274 0.529558i \(-0.177642\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −42.0000 −1.98876
\(447\) 0 0
\(448\) −24.0000 + 24.0000i −1.13389 + 1.13389i
\(449\) 36.0000i 1.69895i 0.527633 + 0.849473i \(0.323080\pi\)
−0.527633 + 0.849473i \(0.676920\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 14.0000i 0.657053i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(458\) 14.0000 14.0000i 0.654177 0.654177i
\(459\) 0 0
\(460\) 0 0
\(461\) −42.0000 −1.95614 −0.978068 0.208288i \(-0.933211\pi\)
−0.978068 + 0.208288i \(0.933211\pi\)
\(462\) 0 0
\(463\) −9.00000 + 9.00000i −0.418265 + 0.418265i −0.884606 0.466340i \(-0.845572\pi\)
0.466340 + 0.884606i \(0.345572\pi\)
\(464\) 24.0000i 1.11417i
\(465\) 0 0
\(466\) 0 0
\(467\) 23.0000 + 23.0000i 1.06431 + 1.06431i 0.997785 + 0.0665285i \(0.0211923\pi\)
0.0665285 + 0.997785i \(0.478808\pi\)
\(468\) 0 0
\(469\) 18.0000i 0.831163i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 28.0000 + 28.0000i 1.27537 + 1.27537i
\(483\) 0 0
\(484\) 22.0000i 1.00000i
\(485\) 0 0
\(486\) 0 0
\(487\) 27.0000 + 27.0000i 1.22349 + 1.22349i 0.966384 + 0.257103i \(0.0827679\pi\)
0.257103 + 0.966384i \(0.417232\pi\)
\(488\) −16.0000 + 16.0000i −0.724286 + 0.724286i
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −31.0000 + 31.0000i −1.38222 + 1.38222i −0.541559 + 0.840663i \(0.682166\pi\)
−0.840663 + 0.541559i \(0.817834\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 6.00000 6.00000i 0.266207 0.266207i
\(509\) 6.00000i 0.265945i 0.991120 + 0.132973i \(0.0424523\pi\)
−0.991120 + 0.132973i \(0.957548\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −16.0000 16.0000i −0.707107 0.707107i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) 21.0000 21.0000i 0.918266 0.918266i −0.0786374 0.996903i \(-0.525057\pi\)
0.996903 + 0.0786374i \(0.0250569\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 22.0000 0.959246
\(527\) 0 0
\(528\) 0 0
\(529\) 21.0000i 0.913043i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −12.0000 −0.518321
\(537\) 0 0
\(538\) −24.0000 + 24.0000i −1.03471 + 1.03471i
\(539\) 0 0
\(540\) 0 0
\(541\) −38.0000 −1.63375 −0.816874 0.576816i \(-0.804295\pi\)
−0.816874 + 0.576816i \(0.804295\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −33.0000 33.0000i −1.41098 1.41098i −0.753293 0.657685i \(-0.771536\pi\)
−0.657685 0.753293i \(-0.728464\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 12.0000 + 12.0000i 0.506189 + 0.506189i
\(563\) −1.00000 + 1.00000i −0.0421450 + 0.0421450i −0.727865 0.685720i \(-0.759487\pi\)
0.685720 + 0.727865i \(0.259487\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −42.0000 −1.76539
\(567\) 0 0
\(568\) 0 0
\(569\) 36.0000i 1.50920i 0.656186 + 0.754599i \(0.272169\pi\)
−0.656186 + 0.754599i \(0.727831\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 72.0000i 3.00522i
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(578\) 17.0000 17.0000i 0.707107 0.707107i
\(579\) 0 0
\(580\) 0 0
\(581\) 66.0000 2.73814
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7.00000 7.00000i −0.288921 0.288921i 0.547733 0.836653i \(-0.315491\pi\)
−0.836653 + 0.547733i \(0.815491\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 48.0000 1.96616
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −28.0000 −1.14214 −0.571072 0.820900i \(-0.693472\pi\)
−0.571072 + 0.820900i \(0.693472\pi\)
\(602\) −54.0000 54.0000i −2.20088 2.20088i
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −33.0000 33.0000i −1.33943 1.33943i −0.896612 0.442816i \(-0.853979\pi\)
−0.442816 0.896612i \(-0.646021\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(614\) 6.00000i 0.242140i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 18.0000 18.0000i 0.721155 0.721155i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.0000 −0.473972 −0.236986 0.971513i \(-0.576159\pi\)
−0.236986 + 0.971513i \(0.576159\pi\)
\(642\) 0 0
\(643\) 21.0000 21.0000i 0.828159 0.828159i −0.159103 0.987262i \(-0.550860\pi\)
0.987262 + 0.159103i \(0.0508601\pi\)
\(644\) 12.0000i 0.472866i
\(645\) 0 0
\(646\) 0 0
\(647\) 13.0000 + 13.0000i 0.511083 + 0.511083i 0.914858 0.403775i \(-0.132302\pi\)
−0.403775 + 0.914858i \(0.632302\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −18.0000 18.0000i −0.704934 0.704934i
\(653\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 48.0000 1.87409
\(657\) 0 0
\(658\) 42.0000 42.0000i 1.63733 1.63733i
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 32.0000 1.24466 0.622328 0.782757i \(-0.286187\pi\)
0.622328 + 0.782757i \(0.286187\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 44.0000i 1.70753i
\(665\) 0 0
\(666\) 0 0
\(667\) −6.00000 6.00000i −0.232321 0.232321i
\(668\) 34.0000 34.0000i 1.31550 1.31550i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 26.0000 1.00000
\(677\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −31.0000 + 31.0000i −1.18618 + 1.18618i −0.208068 + 0.978114i \(0.566717\pi\)
−0.978114 + 0.208068i \(0.933283\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −24.0000 −0.916324
\(687\) 0 0
\(688\) 36.0000 36.0000i 1.37249 1.37249i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 34.0000i 1.29062i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −26.0000 + 26.0000i −0.984115 + 0.984115i
\(699\) 0 0
\(700\) 0 0
\(701\) 48.0000 1.81293 0.906467 0.422276i \(-0.138769\pi\)
0.906467 + 0.422276i \(0.138769\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −54.0000 54.0000i −2.03088 2.03088i
\(708\) 0 0
\(709\) 46.0000i 1.72757i −0.503864 0.863783i \(-0.668089\pi\)
0.503864 0.863783i \(-0.331911\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 12.0000 + 12.0000i 0.449719 + 0.449719i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 54.0000 2.01107
\(722\) 19.0000 + 19.0000i 0.707107 + 0.707107i
\(723\) 0 0
\(724\) 4.00000i 0.148659i
\(725\) 0 0
\(726\) 0 0
\(727\) −3.00000 3.00000i −0.111264 0.111264i 0.649283 0.760547i \(-0.275069\pi\)
−0.760547 + 0.649283i \(0.775069\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(734\) 54.0000i 1.99318i
\(735\) 0 0
\(736\) −8.00000 −0.294884
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 19.0000 19.0000i 0.697042 0.697042i −0.266729 0.963772i \(-0.585943\pi\)
0.963772 + 0.266729i \(0.0859429\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 78.0000i 2.85006i
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 28.0000 + 28.0000i 1.02105 + 1.02105i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −42.0000 −1.52250 −0.761249 0.648459i \(-0.775414\pi\)
−0.761249 + 0.648459i \(0.775414\pi\)
\(762\) 0 0
\(763\) −48.0000 + 48.0000i −1.73772 + 1.73772i
\(764\) 0 0
\(765\) 0 0
\(766\) −38.0000 −1.37300
\(767\) 0 0
\(768\) 0 0
\(769\) 14.0000i 0.504853i 0.967616 + 0.252426i \(0.0812286\pi\)
−0.967616 + 0.252426i \(0.918771\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −24.0000 + 24.0000i −0.860442 + 0.860442i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 44.0000i 1.57143i
\(785\) 0 0
\(786\) 0 0
\(787\) 27.0000 + 27.0000i 0.962446 + 0.962446i 0.999320 0.0368739i \(-0.0117400\pi\)
−0.0368739 + 0.999320i \(0.511740\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) −18.0000 18.0000i −0.635602 0.635602i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 36.0000 36.0000i 1.26648 1.26648i
\(809\) 54.0000i 1.89854i −0.314464 0.949269i \(-0.601825\pi\)
0.314464 0.949269i \(-0.398175\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 36.0000 + 36.0000i 1.26335 + 1.26335i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 4.00000 4.00000i 0.139857 0.139857i
\(819\) 0 0
\(820\) 0 0
\(821\) 48.0000 1.67521 0.837606 0.546275i \(-0.183955\pi\)
0.837606 + 0.546275i \(0.183955\pi\)
\(822\) 0 0
\(823\) −39.0000 + 39.0000i −1.35945 + 1.35945i −0.484866 + 0.874588i \(0.661132\pi\)
−0.874588 + 0.484866i \(0.838868\pi\)
\(824\) 36.0000i 1.25412i
\(825\) 0 0
\(826\) 0 0
\(827\) 23.0000 + 23.0000i 0.799788 + 0.799788i 0.983062 0.183274i \(-0.0586694\pi\)
−0.183274 + 0.983062i \(0.558669\pi\)
\(828\) 0 0
\(829\) 56.0000i 1.94496i −0.232986 0.972480i \(-0.574849\pi\)
0.232986 0.972480i \(-0.425151\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 8.00000 + 8.00000i 0.275698 + 0.275698i
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −33.0000 33.0000i −1.13389 1.13389i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(854\) 48.0000i 1.64253i
\(855\) 0 0
\(856\) 52.0000 1.77732
\(857\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −41.0000 + 41.0000i −1.39566 + 1.39566i −0.583653 + 0.812003i \(0.698377\pi\)
−0.812003 + 0.583653i \(0.801623\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −32.0000 32.0000i −1.08366 1.08366i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −12.0000 −0.404290 −0.202145 0.979356i \(-0.564791\pi\)
−0.202145 + 0.979356i \(0.564791\pi\)
\(882\) 0 0
\(883\) −39.0000 + 39.0000i −1.31245 + 1.31245i −0.392853 + 0.919601i \(0.628512\pi\)
−0.919601 + 0.392853i \(0.871488\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −58.0000 −1.94855
\(887\) −37.0000 37.0000i −1.24234 1.24234i −0.959028 0.283310i \(-0.908567\pi\)
−0.283310 0.959028i \(-0.591433\pi\)
\(888\) 0 0
\(889\) 18.0000i 0.603701i
\(890\) 0 0
\(891\) 0 0
\(892\) 42.0000 + 42.0000i 1.40626 + 1.40626i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 48.0000 1.60357
\(897\) 0 0
\(898\) 36.0000 36.0000i 1.20134 1.20134i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −3.00000 3.00000i −0.0996134 0.0996134i 0.655544 0.755157i \(-0.272439\pi\)
−0.755157 + 0.655544i \(0.772439\pi\)
\(908\) 14.0000 14.0000i 0.464606 0.464606i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −28.0000 −0.925146
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 42.0000 + 42.0000i 1.38320 + 1.38320i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 18.0000 0.591517
\(927\) 0 0
\(928\) −24.0000 + 24.0000i −0.787839 + 0.787839i
\(929\) 36.0000i 1.18112i 0.806993 + 0.590561i \(0.201093\pi\)
−0.806993 + 0.590561i \(0.798907\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 46.0000i 1.50517i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(938\) 18.0000 18.0000i 0.587721 0.587721i
\(939\) 0 0
\(940\) 0 0
\(941\) −42.0000 −1.36916 −0.684580 0.728937i \(-0.740015\pi\)
−0.684580 + 0.728937i \(0.740015\pi\)
\(942\) 0 0
\(943\) 12.0000 12.0000i 0.390774 0.390774i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 43.0000 + 43.0000i 1.39731 + 1.39731i 0.807650 + 0.589662i \(0.200739\pi\)
0.589662 + 0.807650i \(0.299261\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 56.0000i 1.80364i
\(965\) 0 0
\(966\) 0 0
\(967\) −33.0000 33.0000i −1.06121 1.06121i −0.998000 0.0632081i \(-0.979867\pi\)
−0.0632081 0.998000i \(-0.520133\pi\)
\(968\) 22.0000 22.0000i 0.707107 0.707107i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 54.0000i 1.73027i
\(975\) 0 0
\(976\) 32.0000 1.02430
\(977\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 29.0000 29.0000i 0.924956 0.924956i −0.0724180 0.997374i \(-0.523072\pi\)
0.997374 + 0.0724180i \(0.0230716\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 18.0000i 0.572367i
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.k.a.343.1 2
3.2 odd 2 100.2.e.c.43.1 yes 2
4.3 odd 2 900.2.k.e.343.1 2
5.2 odd 4 900.2.k.e.307.1 2
5.3 odd 4 inner 900.2.k.a.307.1 2
5.4 even 2 900.2.k.e.343.1 2
12.11 even 2 100.2.e.a.43.1 yes 2
15.2 even 4 100.2.e.a.7.1 2
15.8 even 4 100.2.e.c.7.1 yes 2
15.14 odd 2 100.2.e.a.43.1 yes 2
20.3 even 4 900.2.k.e.307.1 2
20.7 even 4 inner 900.2.k.a.307.1 2
20.19 odd 2 CM 900.2.k.a.343.1 2
24.5 odd 2 1600.2.n.b.1343.1 2
24.11 even 2 1600.2.n.l.1343.1 2
60.23 odd 4 100.2.e.a.7.1 2
60.47 odd 4 100.2.e.c.7.1 yes 2
60.59 even 2 100.2.e.c.43.1 yes 2
120.29 odd 2 1600.2.n.l.1343.1 2
120.53 even 4 1600.2.n.b.1407.1 2
120.59 even 2 1600.2.n.b.1343.1 2
120.77 even 4 1600.2.n.l.1407.1 2
120.83 odd 4 1600.2.n.l.1407.1 2
120.107 odd 4 1600.2.n.b.1407.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
100.2.e.a.7.1 2 15.2 even 4
100.2.e.a.7.1 2 60.23 odd 4
100.2.e.a.43.1 yes 2 12.11 even 2
100.2.e.a.43.1 yes 2 15.14 odd 2
100.2.e.c.7.1 yes 2 15.8 even 4
100.2.e.c.7.1 yes 2 60.47 odd 4
100.2.e.c.43.1 yes 2 3.2 odd 2
100.2.e.c.43.1 yes 2 60.59 even 2
900.2.k.a.307.1 2 5.3 odd 4 inner
900.2.k.a.307.1 2 20.7 even 4 inner
900.2.k.a.343.1 2 1.1 even 1 trivial
900.2.k.a.343.1 2 20.19 odd 2 CM
900.2.k.e.307.1 2 5.2 odd 4
900.2.k.e.307.1 2 20.3 even 4
900.2.k.e.343.1 2 4.3 odd 2
900.2.k.e.343.1 2 5.4 even 2
1600.2.n.b.1343.1 2 24.5 odd 2
1600.2.n.b.1343.1 2 120.59 even 2
1600.2.n.b.1407.1 2 120.53 even 4
1600.2.n.b.1407.1 2 120.107 odd 4
1600.2.n.l.1343.1 2 24.11 even 2
1600.2.n.l.1343.1 2 120.29 odd 2
1600.2.n.l.1407.1 2 120.77 even 4
1600.2.n.l.1407.1 2 120.83 odd 4