L(s) = 1 | + 2·7-s + 2·11-s − 2·13-s − 3·17-s − 3·19-s + 3·23-s − 8·29-s − 5·31-s + 8·37-s + 6·41-s − 20·43-s + 9·47-s − 6·49-s − 53-s − 6·59-s − 11·61-s + 6·67-s − 14·71-s − 2·73-s + 4·77-s − 11·79-s + 83-s + 20·89-s − 4·91-s − 6·97-s + 6·101-s + 12·103-s + ⋯ |
L(s) = 1 | + 0.755·7-s + 0.603·11-s − 0.554·13-s − 0.727·17-s − 0.688·19-s + 0.625·23-s − 1.48·29-s − 0.898·31-s + 1.31·37-s + 0.937·41-s − 3.04·43-s + 1.31·47-s − 6/7·49-s − 0.137·53-s − 0.781·59-s − 1.40·61-s + 0.733·67-s − 1.66·71-s − 0.234·73-s + 0.455·77-s − 1.23·79-s + 0.109·83-s + 2.11·89-s − 0.419·91-s − 0.609·97-s + 0.597·101-s + 1.18·103-s + ⋯ |
Λ(s)=(=(81000000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(81000000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
81000000
= 26⋅34⋅56
|
Sign: |
1
|
Analytic conductor: |
5164.63 |
Root analytic conductor: |
8.47734 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 81000000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | D4 | 1−2T+10T2−2pT3+p2T4 |
| 11 | D4 | 1−2T+18T2−2pT3+p2T4 |
| 13 | D4 | 1+2T+22T2+2pT3+p2T4 |
| 17 | D4 | 1+3T+35T2+3pT3+p2T4 |
| 19 | D4 | 1+3T+39T2+3pT3+p2T4 |
| 23 | D4 | 1−3T+47T2−3pT3+p2T4 |
| 29 | C4 | 1+8T+54T2+8pT3+p2T4 |
| 31 | D4 | 1+5T+57T2+5pT3+p2T4 |
| 37 | D4 | 1−8T+70T2−8pT3+p2T4 |
| 41 | D4 | 1−6T+46T2−6pT3+p2T4 |
| 43 | C2 | (1+10T+pT2)2 |
| 47 | D4 | 1−9T+113T2−9pT3+p2T4 |
| 53 | D4 | 1+T+95T2+pT3+p2T4 |
| 59 | D4 | 1+6T+122T2+6pT3+p2T4 |
| 61 | D4 | 1+11T+141T2+11pT3+p2T4 |
| 67 | D4 | 1−6T+138T2−6pT3+p2T4 |
| 71 | D4 | 1+14T+186T2+14pT3+p2T4 |
| 73 | D4 | 1+2T+102T2+2pT3+p2T4 |
| 79 | D4 | 1+11T+187T2+11pT3+p2T4 |
| 83 | D4 | 1−T+105T2−pT3+p2T4 |
| 89 | D4 | 1−20T+258T2−20pT3+p2T4 |
| 97 | D4 | 1+6T+158T2+6pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.54950892259714879953539379463, −7.35972990049802873612318575040, −6.84092419297923384874577721699, −6.55613449499843370710943959631, −6.22657661393673910892764474823, −5.94423965647449196866592912819, −5.37805617151707899110941103486, −5.17109985595309513323391077084, −4.71911471802450880915649858793, −4.50633739897342558499392459835, −4.00623068770582199970164609822, −3.80997504540090385577158650842, −3.18774796290811662273099437258, −2.91042644258290272161692912629, −2.17432288050964842618024054494, −2.13091268542081583844267243785, −1.34817922856538958334166454247, −1.27791120627764478213900858438, 0, 0,
1.27791120627764478213900858438, 1.34817922856538958334166454247, 2.13091268542081583844267243785, 2.17432288050964842618024054494, 2.91042644258290272161692912629, 3.18774796290811662273099437258, 3.80997504540090385577158650842, 4.00623068770582199970164609822, 4.50633739897342558499392459835, 4.71911471802450880915649858793, 5.17109985595309513323391077084, 5.37805617151707899110941103486, 5.94423965647449196866592912819, 6.22657661393673910892764474823, 6.55613449499843370710943959631, 6.84092419297923384874577721699, 7.35972990049802873612318575040, 7.54950892259714879953539379463