Properties

Label 9000.2.a.m
Level $9000$
Weight $2$
Character orbit 9000.a
Self dual yes
Analytic conductor $71.865$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9000,2,Mod(1,9000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9000 = 2^{3} \cdot 3^{2} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.8653618192\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 \beta q^{7} + ( - 2 \beta + 2) q^{11} - 2 \beta q^{13} + ( - \beta - 1) q^{17} + (\beta - 2) q^{19} + (\beta + 1) q^{23} + (4 \beta - 6) q^{29} + ( - 3 \beta - 1) q^{31} + ( - 4 \beta + 6) q^{37} + 6 \beta q^{41} - 10 q^{43} + (\beta + 4) q^{47} + (4 \beta - 3) q^{49} + (3 \beta - 2) q^{53} + ( - 2 \beta - 2) q^{59} + ( - 3 \beta - 4) q^{61} + ( - 2 \beta + 4) q^{67} + (2 \beta - 8) q^{71} + ( - 6 \beta + 2) q^{73} - 4 q^{77} + (\beta - 6) q^{79} + ( - 7 \beta + 4) q^{83} + (4 \beta + 8) q^{89} + ( - 4 \beta - 4) q^{91} + (6 \beta - 6) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{7} + 2 q^{11} - 2 q^{13} - 3 q^{17} - 3 q^{19} + 3 q^{23} - 8 q^{29} - 5 q^{31} + 8 q^{37} + 6 q^{41} - 20 q^{43} + 9 q^{47} - 2 q^{49} - q^{53} - 6 q^{59} - 11 q^{61} + 6 q^{67} - 14 q^{71} - 2 q^{73} - 8 q^{77} - 11 q^{79} + q^{83} + 20 q^{89} - 12 q^{91} - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
0 0 0 0 0 −1.23607 0 0 0
1.2 0 0 0 0 0 3.23607 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9000.2.a.m yes 2
3.b odd 2 1 9000.2.a.l yes 2
5.b even 2 1 9000.2.a.e yes 2
15.d odd 2 1 9000.2.a.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9000.2.a.d 2 15.d odd 2 1
9000.2.a.e yes 2 5.b even 2 1
9000.2.a.l yes 2 3.b odd 2 1
9000.2.a.m yes 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9000))\):

\( T_{7}^{2} - 2T_{7} - 4 \) Copy content Toggle raw display
\( T_{11}^{2} - 2T_{11} - 4 \) Copy content Toggle raw display
\( T_{13}^{2} + 2T_{13} - 4 \) Copy content Toggle raw display
\( T_{17}^{2} + 3T_{17} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$11$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$13$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 3T + 1 \) Copy content Toggle raw display
$19$ \( T^{2} + 3T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} - 3T + 1 \) Copy content Toggle raw display
$29$ \( T^{2} + 8T - 4 \) Copy content Toggle raw display
$31$ \( T^{2} + 5T - 5 \) Copy content Toggle raw display
$37$ \( T^{2} - 8T - 4 \) Copy content Toggle raw display
$41$ \( T^{2} - 6T - 36 \) Copy content Toggle raw display
$43$ \( (T + 10)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 9T + 19 \) Copy content Toggle raw display
$53$ \( T^{2} + T - 11 \) Copy content Toggle raw display
$59$ \( T^{2} + 6T + 4 \) Copy content Toggle raw display
$61$ \( T^{2} + 11T + 19 \) Copy content Toggle raw display
$67$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
$71$ \( T^{2} + 14T + 44 \) Copy content Toggle raw display
$73$ \( T^{2} + 2T - 44 \) Copy content Toggle raw display
$79$ \( T^{2} + 11T + 29 \) Copy content Toggle raw display
$83$ \( T^{2} - T - 61 \) Copy content Toggle raw display
$89$ \( T^{2} - 20T + 80 \) Copy content Toggle raw display
$97$ \( T^{2} + 6T - 36 \) Copy content Toggle raw display
show more
show less