Properties

Label 2-9075-1.1-c1-0-329
Degree $2$
Conductor $9075$
Sign $-1$
Analytic cond. $72.4642$
Root an. cond. $8.51259$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.18·2-s + 3-s + 2.79·4-s + 2.18·6-s − 4.37·7-s + 1.73·8-s + 9-s + 2.79·12-s + 4.37·13-s − 9.58·14-s − 1.79·16-s − 3.55·17-s + 2.18·18-s + 5.29·19-s − 4.37·21-s − 8.58·23-s + 1.73·24-s + 9.58·26-s + 27-s − 12.2·28-s + 0.913·29-s − 6.58·31-s − 7.38·32-s − 7.79·34-s + 2.79·36-s − 0.417·37-s + 11.5·38-s + ⋯
L(s)  = 1  + 1.54·2-s + 0.577·3-s + 1.39·4-s + 0.893·6-s − 1.65·7-s + 0.612·8-s + 0.333·9-s + 0.805·12-s + 1.21·13-s − 2.56·14-s − 0.447·16-s − 0.863·17-s + 0.515·18-s + 1.21·19-s − 0.955·21-s − 1.78·23-s + 0.353·24-s + 1.87·26-s + 0.192·27-s − 2.30·28-s + 0.169·29-s − 1.18·31-s − 1.30·32-s − 1.33·34-s + 0.465·36-s − 0.0686·37-s + 1.87·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9075 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9075 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9075\)    =    \(3 \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(72.4642\)
Root analytic conductor: \(8.51259\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9075,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
11 \( 1 \)
good2 \( 1 - 2.18T + 2T^{2} \)
7 \( 1 + 4.37T + 7T^{2} \)
13 \( 1 - 4.37T + 13T^{2} \)
17 \( 1 + 3.55T + 17T^{2} \)
19 \( 1 - 5.29T + 19T^{2} \)
23 \( 1 + 8.58T + 23T^{2} \)
29 \( 1 - 0.913T + 29T^{2} \)
31 \( 1 + 6.58T + 31T^{2} \)
37 \( 1 + 0.417T + 37T^{2} \)
41 \( 1 + 6.92T + 41T^{2} \)
43 \( 1 + 0.913T + 43T^{2} \)
47 \( 1 - 2.58T + 47T^{2} \)
53 \( 1 + 5T + 53T^{2} \)
59 \( 1 - 5.58T + 59T^{2} \)
61 \( 1 + 8.66T + 61T^{2} \)
67 \( 1 + 12.7T + 67T^{2} \)
71 \( 1 - 9.16T + 71T^{2} \)
73 \( 1 - 5.10T + 73T^{2} \)
79 \( 1 + 2.64T + 79T^{2} \)
83 \( 1 + 1.63T + 83T^{2} \)
89 \( 1 + 10.7T + 89T^{2} \)
97 \( 1 + 5.58T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.01960370816487638771998147241, −6.54828798975867937902107333942, −5.94734915777262900377998897074, −5.41182194639252941858617777354, −4.32723838790497135273179430462, −3.74551940284644432756295402596, −3.32610714865974580235987582341, −2.64044484876432207591000354542, −1.66921430310310383203723507868, 0, 1.66921430310310383203723507868, 2.64044484876432207591000354542, 3.32610714865974580235987582341, 3.74551940284644432756295402596, 4.32723838790497135273179430462, 5.41182194639252941858617777354, 5.94734915777262900377998897074, 6.54828798975867937902107333942, 7.01960370816487638771998147241

Graph of the $Z$-function along the critical line