Properties

Label 9075.2.a.cz
Level $9075$
Weight $2$
Character orbit 9075.a
Self dual yes
Analytic conductor $72.464$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9075,2,Mod(1,9075)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9075, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9075.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9075 = 3 \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9075.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.4642398343\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1815)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} + q^{3} - \beta_{2} q^{4} + \beta_{3} q^{6} - 2 \beta_{3} q^{7} + (\beta_{3} + \beta_1) q^{8} + q^{9} - \beta_{2} q^{12} + 2 \beta_{3} q^{13} + (2 \beta_{2} - 4) q^{14} + (\beta_{2} + 1) q^{16}+ \cdots + (13 \beta_{3} + 4 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 2 q^{4} + 4 q^{9} + 2 q^{12} - 20 q^{14} + 2 q^{16} - 16 q^{23} + 20 q^{26} + 4 q^{27} - 8 q^{31} - 22 q^{34} + 2 q^{36} - 20 q^{37} + 28 q^{38} - 20 q^{42} - 8 q^{47} + 2 q^{48} + 12 q^{49}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 5x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 5\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 5\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.456850
2.18890
−2.18890
−0.456850
−2.18890 1.00000 2.79129 0 −2.18890 4.37780 −1.73205 1.00000 0
1.2 −0.456850 1.00000 −1.79129 0 −0.456850 0.913701 1.73205 1.00000 0
1.3 0.456850 1.00000 −1.79129 0 0.456850 −0.913701 −1.73205 1.00000 0
1.4 2.18890 1.00000 2.79129 0 2.18890 −4.37780 1.73205 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(11\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9075.2.a.cz 4
5.b even 2 1 9075.2.a.cs 4
5.c odd 4 2 1815.2.c.f 8
11.b odd 2 1 inner 9075.2.a.cz 4
55.d odd 2 1 9075.2.a.cs 4
55.e even 4 2 1815.2.c.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1815.2.c.f 8 5.c odd 4 2
1815.2.c.f 8 55.e even 4 2
9075.2.a.cs 4 5.b even 2 1
9075.2.a.cs 4 55.d odd 2 1
9075.2.a.cz 4 1.a even 1 1 trivial
9075.2.a.cz 4 11.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9075))\):

\( T_{2}^{4} - 5T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{4} - 20T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{13}^{4} - 20T_{13}^{2} + 16 \) Copy content Toggle raw display
\( T_{17}^{4} - 62T_{17}^{2} + 625 \) Copy content Toggle raw display
\( T_{19}^{2} - 28 \) Copy content Toggle raw display
\( T_{23}^{2} + 8T_{23} - 5 \) Copy content Toggle raw display
\( T_{37}^{2} + 10T_{37} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 5T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 20T^{2} + 16 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 20T^{2} + 16 \) Copy content Toggle raw display
$17$ \( T^{4} - 62T^{2} + 625 \) Copy content Toggle raw display
$19$ \( (T^{2} - 28)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 8 T - 5)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 20T^{2} + 16 \) Copy content Toggle raw display
$31$ \( (T^{2} + 4 T - 17)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 10 T + 4)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 48)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 20T^{2} + 16 \) Copy content Toggle raw display
$47$ \( (T^{2} + 4 T - 17)^{2} \) Copy content Toggle raw display
$53$ \( (T + 5)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - 2 T - 20)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 75)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 2 T - 188)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 84)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 272T^{2} + 6400 \) Copy content Toggle raw display
$79$ \( (T^{2} - 7)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 152T^{2} + 400 \) Copy content Toggle raw display
$89$ \( (T^{2} - 6 T - 180)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 2 T - 20)^{2} \) Copy content Toggle raw display
show more
show less