Properties

Label 1815.2.c.f
Level $1815$
Weight $2$
Character orbit 1815.c
Analytic conductor $14.493$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1815,2,Mod(364,1815)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1815, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1815.364");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1815.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.4928479669\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.49787136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{6} q^{2} - \beta_{3} q^{3} + \beta_{4} q^{4} + ( - \beta_{3} + 2) q^{5} - \beta_{7} q^{6} - 2 \beta_{6} q^{7} + ( - \beta_{6} - \beta_{2}) q^{8} - q^{9} + ( - \beta_{7} + 2 \beta_{6}) q^{10}+ \cdots + ( - 13 \beta_{6} - 4 \beta_{2}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{4} + 16 q^{5} - 8 q^{9} + 40 q^{14} - 8 q^{15} + 4 q^{16} - 8 q^{20} + 24 q^{25} + 40 q^{26} - 16 q^{31} + 44 q^{34} + 4 q^{36} - 16 q^{45} - 24 q^{49} - 24 q^{56} - 8 q^{59} + 4 q^{60} + 64 q^{64}+ \cdots - 80 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{7} + 5\nu^{5} + 15\nu^{3} + 42\nu ) / 20 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{6} + 5\nu^{4} + 15\nu^{2} + 8 ) / 20 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{7} - 5\nu^{5} + 5\nu^{3} - 16\nu ) / 40 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} - 3\nu^{4} - \nu^{2} - 8 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{7} - 3\nu^{5} - 5\nu^{3} - 4\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 7\nu^{6} + 5\nu^{4} + 15\nu^{2} + 44 ) / 20 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{7} - \nu^{5} - 3\nu^{3} - 6\nu ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} - \beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} + \beta_{4} + 2\beta_{2} - 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{7} - \beta_{5} + 5\beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -2\beta_{6} - 3\beta_{4} + \beta_{2} - 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 5\beta_{7} - 6\beta_{5} - 6\beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 5\beta_{6} - 5\beta_{2} - 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -10\beta_{7} + 3\beta_{5} - 3\beta_{3} - 7\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1815\mathbb{Z}\right)^\times\).

\(n\) \(727\) \(1211\) \(1696\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
364.1
0.228425 1.39564i
−0.228425 + 1.39564i
1.09445 + 0.895644i
−1.09445 0.895644i
−1.09445 + 0.895644i
1.09445 0.895644i
−0.228425 1.39564i
0.228425 + 1.39564i
2.18890i 1.00000i −2.79129 2.00000 1.00000i −2.18890 4.37780i 1.73205i −1.00000 −2.18890 4.37780i
364.2 2.18890i 1.00000i −2.79129 2.00000 + 1.00000i 2.18890 4.37780i 1.73205i −1.00000 2.18890 4.37780i
364.3 0.456850i 1.00000i 1.79129 2.00000 1.00000i −0.456850 0.913701i 1.73205i −1.00000 −0.456850 0.913701i
364.4 0.456850i 1.00000i 1.79129 2.00000 + 1.00000i 0.456850 0.913701i 1.73205i −1.00000 0.456850 0.913701i
364.5 0.456850i 1.00000i 1.79129 2.00000 1.00000i 0.456850 0.913701i 1.73205i −1.00000 0.456850 + 0.913701i
364.6 0.456850i 1.00000i 1.79129 2.00000 + 1.00000i −0.456850 0.913701i 1.73205i −1.00000 −0.456850 + 0.913701i
364.7 2.18890i 1.00000i −2.79129 2.00000 1.00000i 2.18890 4.37780i 1.73205i −1.00000 2.18890 + 4.37780i
364.8 2.18890i 1.00000i −2.79129 2.00000 + 1.00000i −2.18890 4.37780i 1.73205i −1.00000 −2.18890 + 4.37780i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 364.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
11.b odd 2 1 inner
55.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1815.2.c.f 8
5.b even 2 1 inner 1815.2.c.f 8
5.c odd 4 1 9075.2.a.cs 4
5.c odd 4 1 9075.2.a.cz 4
11.b odd 2 1 inner 1815.2.c.f 8
55.d odd 2 1 inner 1815.2.c.f 8
55.e even 4 1 9075.2.a.cs 4
55.e even 4 1 9075.2.a.cz 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1815.2.c.f 8 1.a even 1 1 trivial
1815.2.c.f 8 5.b even 2 1 inner
1815.2.c.f 8 11.b odd 2 1 inner
1815.2.c.f 8 55.d odd 2 1 inner
9075.2.a.cs 4 5.c odd 4 1
9075.2.a.cs 4 55.e even 4 1
9075.2.a.cz 4 5.c odd 4 1
9075.2.a.cz 4 55.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1815, [\chi])\):

\( T_{2}^{4} + 5T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{19}^{2} - 28 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 5 T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 4 T + 5)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} + 20 T^{2} + 16)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( (T^{4} + 20 T^{2} + 16)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 62 T^{2} + 625)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 28)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} + 74 T^{2} + 25)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 20 T^{2} + 16)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 4 T - 17)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} + 92 T^{2} + 16)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 48)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + 20 T^{2} + 16)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 50 T^{2} + 289)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 25)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} + 2 T - 20)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 75)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 380 T^{2} + 35344)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 84)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} + 272 T^{2} + 6400)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 7)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} + 152 T^{2} + 400)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 6 T - 180)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} + 44 T^{2} + 400)^{2} \) Copy content Toggle raw display
show more
show less