L(s) = 1 | − 3-s − 2·5-s − 7-s − 9-s − 4·11-s − 3·13-s + 2·15-s + 7·17-s − 4·19-s + 21-s − 2·23-s + 3·25-s − 8·29-s − 8·31-s + 4·33-s + 2·35-s − 3·37-s + 3·39-s − 4·43-s + 2·45-s − 5·47-s − 9·49-s − 7·51-s + 13·53-s + 8·55-s + 4·57-s − 7·59-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.894·5-s − 0.377·7-s − 1/3·9-s − 1.20·11-s − 0.832·13-s + 0.516·15-s + 1.69·17-s − 0.917·19-s + 0.218·21-s − 0.417·23-s + 3/5·25-s − 1.48·29-s − 1.43·31-s + 0.696·33-s + 0.338·35-s − 0.493·37-s + 0.480·39-s − 0.609·43-s + 0.298·45-s − 0.729·47-s − 9/7·49-s − 0.980·51-s + 1.78·53-s + 1.07·55-s + 0.529·57-s − 0.911·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 846400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 846400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 5 | $C_1$ | \( ( 1 + T )^{2} \) |
| 23 | $C_1$ | \( ( 1 + T )^{2} \) |
good | 3 | $D_{4}$ | \( 1 + T + 2 T^{2} + p T^{3} + p^{2} T^{4} \) |
| 7 | $D_{4}$ | \( 1 + T + 10 T^{2} + p T^{3} + p^{2} T^{4} \) |
| 11 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 13 | $D_{4}$ | \( 1 + 3 T + 24 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 17 | $D_{4}$ | \( 1 - 7 T + 42 T^{2} - 7 p T^{3} + p^{2} T^{4} \) |
| 19 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 29 | $D_{4}$ | \( 1 + 8 T + 57 T^{2} + 8 p T^{3} + p^{2} T^{4} \) |
| 31 | $D_{4}$ | \( 1 + 8 T + 61 T^{2} + 8 p T^{3} + p^{2} T^{4} \) |
| 37 | $D_{4}$ | \( 1 + 3 T + 72 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 41 | $C_2^2$ | \( 1 + 65 T^{2} + p^{2} T^{4} \) |
| 43 | $D_{4}$ | \( 1 + 4 T + 22 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 47 | $D_{4}$ | \( 1 + 5 T + 62 T^{2} + 5 p T^{3} + p^{2} T^{4} \) |
| 53 | $D_{4}$ | \( 1 - 13 T + 144 T^{2} - 13 p T^{3} + p^{2} T^{4} \) |
| 59 | $D_{4}$ | \( 1 + 7 T + 126 T^{2} + 7 p T^{3} + p^{2} T^{4} \) |
| 61 | $D_{4}$ | \( 1 + 10 T + 130 T^{2} + 10 p T^{3} + p^{2} T^{4} \) |
| 67 | $D_{4}$ | \( 1 + 19 T + 220 T^{2} + 19 p T^{3} + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 + 5 T + p T^{2} )^{2} \) |
| 73 | $D_{4}$ | \( 1 - 11 T + 172 T^{2} - 11 p T^{3} + p^{2} T^{4} \) |
| 79 | $D_{4}$ | \( 1 + 10 T + 166 T^{2} + 10 p T^{3} + p^{2} T^{4} \) |
| 83 | $D_{4}$ | \( 1 - 3 T + 130 T^{2} - 3 p T^{3} + p^{2} T^{4} \) |
| 89 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 97 | $D_{4}$ | \( 1 - 2 T + 178 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04235762469178362002793081819, −9.527700492840389776085760445404, −8.918055005191489921962297743259, −8.744167355256539290499300744553, −7.87787094055281652610846232806, −7.82217264057467387909205067532, −7.41800561273076131734096444241, −7.08046810530948295305554100968, −6.26167348608412767415468072335, −6.00307995101330595635695902458, −5.32244973383612532078712401436, −5.25635349558868339763553177976, −4.58372953865440310153755007996, −3.99454410774820647075962821105, −3.34803918581233743638264399853, −3.11920822435374775943149076422, −2.27445453388986391326208563508, −1.54170528812686804589089880290, 0, 0,
1.54170528812686804589089880290, 2.27445453388986391326208563508, 3.11920822435374775943149076422, 3.34803918581233743638264399853, 3.99454410774820647075962821105, 4.58372953865440310153755007996, 5.25635349558868339763553177976, 5.32244973383612532078712401436, 6.00307995101330595635695902458, 6.26167348608412767415468072335, 7.08046810530948295305554100968, 7.41800561273076131734096444241, 7.82217264057467387909205067532, 7.87787094055281652610846232806, 8.744167355256539290499300744553, 8.918055005191489921962297743259, 9.527700492840389776085760445404, 10.04235762469178362002793081819