L(s) = 1 | − 3-s − 2·5-s − 7-s − 9-s − 4·11-s − 3·13-s + 2·15-s + 7·17-s − 4·19-s + 21-s − 2·23-s + 3·25-s − 8·29-s − 8·31-s + 4·33-s + 2·35-s − 3·37-s + 3·39-s − 4·43-s + 2·45-s − 5·47-s − 9·49-s − 7·51-s + 13·53-s + 8·55-s + 4·57-s − 7·59-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.894·5-s − 0.377·7-s − 1/3·9-s − 1.20·11-s − 0.832·13-s + 0.516·15-s + 1.69·17-s − 0.917·19-s + 0.218·21-s − 0.417·23-s + 3/5·25-s − 1.48·29-s − 1.43·31-s + 0.696·33-s + 0.338·35-s − 0.493·37-s + 0.480·39-s − 0.609·43-s + 0.298·45-s − 0.729·47-s − 9/7·49-s − 0.980·51-s + 1.78·53-s + 1.07·55-s + 0.529·57-s − 0.911·59-s + ⋯ |
Λ(s)=(=(846400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(846400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
846400
= 26⋅52⋅232
|
Sign: |
1
|
Analytic conductor: |
53.9671 |
Root analytic conductor: |
2.71039 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 846400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1+T)2 |
| 23 | C1 | (1+T)2 |
good | 3 | D4 | 1+T+2T2+pT3+p2T4 |
| 7 | D4 | 1+T+10T2+pT3+p2T4 |
| 11 | C2 | (1+2T+pT2)2 |
| 13 | D4 | 1+3T+24T2+3pT3+p2T4 |
| 17 | D4 | 1−7T+42T2−7pT3+p2T4 |
| 19 | C2 | (1+2T+pT2)2 |
| 29 | D4 | 1+8T+57T2+8pT3+p2T4 |
| 31 | D4 | 1+8T+61T2+8pT3+p2T4 |
| 37 | D4 | 1+3T+72T2+3pT3+p2T4 |
| 41 | C22 | 1+65T2+p2T4 |
| 43 | D4 | 1+4T+22T2+4pT3+p2T4 |
| 47 | D4 | 1+5T+62T2+5pT3+p2T4 |
| 53 | D4 | 1−13T+144T2−13pT3+p2T4 |
| 59 | D4 | 1+7T+126T2+7pT3+p2T4 |
| 61 | D4 | 1+10T+130T2+10pT3+p2T4 |
| 67 | D4 | 1+19T+220T2+19pT3+p2T4 |
| 71 | C2 | (1+5T+pT2)2 |
| 73 | D4 | 1−11T+172T2−11pT3+p2T4 |
| 79 | D4 | 1+10T+166T2+10pT3+p2T4 |
| 83 | D4 | 1−3T+130T2−3pT3+p2T4 |
| 89 | C2 | (1−8T+pT2)2 |
| 97 | D4 | 1−2T+178T2−2pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.04235762469178362002793081819, −9.527700492840389776085760445404, −8.918055005191489921962297743259, −8.744167355256539290499300744553, −7.87787094055281652610846232806, −7.82217264057467387909205067532, −7.41800561273076131734096444241, −7.08046810530948295305554100968, −6.26167348608412767415468072335, −6.00307995101330595635695902458, −5.32244973383612532078712401436, −5.25635349558868339763553177976, −4.58372953865440310153755007996, −3.99454410774820647075962821105, −3.34803918581233743638264399853, −3.11920822435374775943149076422, −2.27445453388986391326208563508, −1.54170528812686804589089880290, 0, 0,
1.54170528812686804589089880290, 2.27445453388986391326208563508, 3.11920822435374775943149076422, 3.34803918581233743638264399853, 3.99454410774820647075962821105, 4.58372953865440310153755007996, 5.25635349558868339763553177976, 5.32244973383612532078712401436, 6.00307995101330595635695902458, 6.26167348608412767415468072335, 7.08046810530948295305554100968, 7.41800561273076131734096444241, 7.82217264057467387909205067532, 7.87787094055281652610846232806, 8.744167355256539290499300744553, 8.918055005191489921962297743259, 9.527700492840389776085760445404, 10.04235762469178362002793081819