Properties

Label 920.2.a.e.1.2
Level $920$
Weight $2$
Character 920.1
Self dual yes
Analytic conductor $7.346$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [920,2,Mod(1,920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("920.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 920 = 2^{3} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 920.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.34623698596\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 920.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.56155 q^{3} -1.00000 q^{5} -2.56155 q^{7} -0.561553 q^{9} -2.00000 q^{11} -3.56155 q^{13} -1.56155 q^{15} +1.43845 q^{17} -2.00000 q^{19} -4.00000 q^{21} -1.00000 q^{23} +1.00000 q^{25} -5.56155 q^{27} -8.12311 q^{29} +0.123106 q^{31} -3.12311 q^{33} +2.56155 q^{35} +0.561553 q^{37} -5.56155 q^{39} +4.12311 q^{41} +6.24621 q^{43} +0.561553 q^{45} -8.68466 q^{47} -0.438447 q^{49} +2.24621 q^{51} +8.56155 q^{53} +2.00000 q^{55} -3.12311 q^{57} -1.43845 q^{59} -0.876894 q^{61} +1.43845 q^{63} +3.56155 q^{65} -7.43845 q^{67} -1.56155 q^{69} -5.00000 q^{71} +7.56155 q^{73} +1.56155 q^{75} +5.12311 q^{77} -0.876894 q^{79} -7.00000 q^{81} +7.68466 q^{83} -1.43845 q^{85} -12.6847 q^{87} +8.00000 q^{89} +9.12311 q^{91} +0.192236 q^{93} +2.00000 q^{95} +5.12311 q^{97} +1.12311 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 2 q^{5} - q^{7} + 3 q^{9} - 4 q^{11} - 3 q^{13} + q^{15} + 7 q^{17} - 4 q^{19} - 8 q^{21} - 2 q^{23} + 2 q^{25} - 7 q^{27} - 8 q^{29} - 8 q^{31} + 2 q^{33} + q^{35} - 3 q^{37} - 7 q^{39}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.56155 0.901563 0.450781 0.892634i \(-0.351145\pi\)
0.450781 + 0.892634i \(0.351145\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.56155 −0.968176 −0.484088 0.875019i \(-0.660849\pi\)
−0.484088 + 0.875019i \(0.660849\pi\)
\(8\) 0 0
\(9\) −0.561553 −0.187184
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −3.56155 −0.987797 −0.493899 0.869520i \(-0.664429\pi\)
−0.493899 + 0.869520i \(0.664429\pi\)
\(14\) 0 0
\(15\) −1.56155 −0.403191
\(16\) 0 0
\(17\) 1.43845 0.348875 0.174437 0.984668i \(-0.444189\pi\)
0.174437 + 0.984668i \(0.444189\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.56155 −1.07032
\(28\) 0 0
\(29\) −8.12311 −1.50842 −0.754211 0.656632i \(-0.771981\pi\)
−0.754211 + 0.656632i \(0.771981\pi\)
\(30\) 0 0
\(31\) 0.123106 0.0221104 0.0110552 0.999939i \(-0.496481\pi\)
0.0110552 + 0.999939i \(0.496481\pi\)
\(32\) 0 0
\(33\) −3.12311 −0.543663
\(34\) 0 0
\(35\) 2.56155 0.432981
\(36\) 0 0
\(37\) 0.561553 0.0923187 0.0461594 0.998934i \(-0.485302\pi\)
0.0461594 + 0.998934i \(0.485302\pi\)
\(38\) 0 0
\(39\) −5.56155 −0.890561
\(40\) 0 0
\(41\) 4.12311 0.643921 0.321960 0.946753i \(-0.395658\pi\)
0.321960 + 0.946753i \(0.395658\pi\)
\(42\) 0 0
\(43\) 6.24621 0.952538 0.476269 0.879300i \(-0.341989\pi\)
0.476269 + 0.879300i \(0.341989\pi\)
\(44\) 0 0
\(45\) 0.561553 0.0837114
\(46\) 0 0
\(47\) −8.68466 −1.26679 −0.633394 0.773830i \(-0.718339\pi\)
−0.633394 + 0.773830i \(0.718339\pi\)
\(48\) 0 0
\(49\) −0.438447 −0.0626353
\(50\) 0 0
\(51\) 2.24621 0.314532
\(52\) 0 0
\(53\) 8.56155 1.17602 0.588010 0.808854i \(-0.299912\pi\)
0.588010 + 0.808854i \(0.299912\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) −3.12311 −0.413665
\(58\) 0 0
\(59\) −1.43845 −0.187270 −0.0936349 0.995607i \(-0.529849\pi\)
−0.0936349 + 0.995607i \(0.529849\pi\)
\(60\) 0 0
\(61\) −0.876894 −0.112275 −0.0561374 0.998423i \(-0.517878\pi\)
−0.0561374 + 0.998423i \(0.517878\pi\)
\(62\) 0 0
\(63\) 1.43845 0.181227
\(64\) 0 0
\(65\) 3.56155 0.441756
\(66\) 0 0
\(67\) −7.43845 −0.908751 −0.454375 0.890810i \(-0.650138\pi\)
−0.454375 + 0.890810i \(0.650138\pi\)
\(68\) 0 0
\(69\) −1.56155 −0.187989
\(70\) 0 0
\(71\) −5.00000 −0.593391 −0.296695 0.954972i \(-0.595885\pi\)
−0.296695 + 0.954972i \(0.595885\pi\)
\(72\) 0 0
\(73\) 7.56155 0.885013 0.442506 0.896765i \(-0.354089\pi\)
0.442506 + 0.896765i \(0.354089\pi\)
\(74\) 0 0
\(75\) 1.56155 0.180313
\(76\) 0 0
\(77\) 5.12311 0.583832
\(78\) 0 0
\(79\) −0.876894 −0.0986583 −0.0493292 0.998783i \(-0.515708\pi\)
−0.0493292 + 0.998783i \(0.515708\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) 7.68466 0.843501 0.421750 0.906712i \(-0.361416\pi\)
0.421750 + 0.906712i \(0.361416\pi\)
\(84\) 0 0
\(85\) −1.43845 −0.156022
\(86\) 0 0
\(87\) −12.6847 −1.35994
\(88\) 0 0
\(89\) 8.00000 0.847998 0.423999 0.905663i \(-0.360626\pi\)
0.423999 + 0.905663i \(0.360626\pi\)
\(90\) 0 0
\(91\) 9.12311 0.956361
\(92\) 0 0
\(93\) 0.192236 0.0199339
\(94\) 0 0
\(95\) 2.00000 0.205196
\(96\) 0 0
\(97\) 5.12311 0.520173 0.260086 0.965585i \(-0.416249\pi\)
0.260086 + 0.965585i \(0.416249\pi\)
\(98\) 0 0
\(99\) 1.12311 0.112876
\(100\) 0 0
\(101\) 10.8078 1.07541 0.537706 0.843132i \(-0.319291\pi\)
0.537706 + 0.843132i \(0.319291\pi\)
\(102\) 0 0
\(103\) −14.2462 −1.40372 −0.701860 0.712314i \(-0.747647\pi\)
−0.701860 + 0.712314i \(0.747647\pi\)
\(104\) 0 0
\(105\) 4.00000 0.390360
\(106\) 0 0
\(107\) −1.68466 −0.162862 −0.0814310 0.996679i \(-0.525949\pi\)
−0.0814310 + 0.996679i \(0.525949\pi\)
\(108\) 0 0
\(109\) −1.12311 −0.107574 −0.0537870 0.998552i \(-0.517129\pi\)
−0.0537870 + 0.998552i \(0.517129\pi\)
\(110\) 0 0
\(111\) 0.876894 0.0832311
\(112\) 0 0
\(113\) 5.43845 0.511606 0.255803 0.966729i \(-0.417660\pi\)
0.255803 + 0.966729i \(0.417660\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) −3.68466 −0.337772
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 6.43845 0.580535
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −19.8078 −1.75765 −0.878827 0.477140i \(-0.841674\pi\)
−0.878827 + 0.477140i \(0.841674\pi\)
\(128\) 0 0
\(129\) 9.75379 0.858773
\(130\) 0 0
\(131\) −18.9309 −1.65400 −0.826999 0.562204i \(-0.809954\pi\)
−0.826999 + 0.562204i \(0.809954\pi\)
\(132\) 0 0
\(133\) 5.12311 0.444230
\(134\) 0 0
\(135\) 5.56155 0.478662
\(136\) 0 0
\(137\) 21.6155 1.84674 0.923370 0.383912i \(-0.125423\pi\)
0.923370 + 0.383912i \(0.125423\pi\)
\(138\) 0 0
\(139\) −10.3693 −0.879514 −0.439757 0.898117i \(-0.644935\pi\)
−0.439757 + 0.898117i \(0.644935\pi\)
\(140\) 0 0
\(141\) −13.5616 −1.14209
\(142\) 0 0
\(143\) 7.12311 0.595664
\(144\) 0 0
\(145\) 8.12311 0.674587
\(146\) 0 0
\(147\) −0.684658 −0.0564697
\(148\) 0 0
\(149\) 0.876894 0.0718380 0.0359190 0.999355i \(-0.488564\pi\)
0.0359190 + 0.999355i \(0.488564\pi\)
\(150\) 0 0
\(151\) 1.56155 0.127077 0.0635387 0.997979i \(-0.479761\pi\)
0.0635387 + 0.997979i \(0.479761\pi\)
\(152\) 0 0
\(153\) −0.807764 −0.0653039
\(154\) 0 0
\(155\) −0.123106 −0.00988808
\(156\) 0 0
\(157\) −15.6847 −1.25177 −0.625886 0.779915i \(-0.715262\pi\)
−0.625886 + 0.779915i \(0.715262\pi\)
\(158\) 0 0
\(159\) 13.3693 1.06026
\(160\) 0 0
\(161\) 2.56155 0.201879
\(162\) 0 0
\(163\) −6.68466 −0.523583 −0.261791 0.965124i \(-0.584313\pi\)
−0.261791 + 0.965124i \(0.584313\pi\)
\(164\) 0 0
\(165\) 3.12311 0.243133
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) −0.315342 −0.0242570
\(170\) 0 0
\(171\) 1.12311 0.0858860
\(172\) 0 0
\(173\) −7.12311 −0.541560 −0.270780 0.962641i \(-0.587282\pi\)
−0.270780 + 0.962641i \(0.587282\pi\)
\(174\) 0 0
\(175\) −2.56155 −0.193635
\(176\) 0 0
\(177\) −2.24621 −0.168836
\(178\) 0 0
\(179\) −7.31534 −0.546774 −0.273387 0.961904i \(-0.588144\pi\)
−0.273387 + 0.961904i \(0.588144\pi\)
\(180\) 0 0
\(181\) −8.87689 −0.659814 −0.329907 0.944013i \(-0.607017\pi\)
−0.329907 + 0.944013i \(0.607017\pi\)
\(182\) 0 0
\(183\) −1.36932 −0.101223
\(184\) 0 0
\(185\) −0.561553 −0.0412862
\(186\) 0 0
\(187\) −2.87689 −0.210379
\(188\) 0 0
\(189\) 14.2462 1.03626
\(190\) 0 0
\(191\) −3.12311 −0.225980 −0.112990 0.993596i \(-0.536043\pi\)
−0.112990 + 0.993596i \(0.536043\pi\)
\(192\) 0 0
\(193\) 18.9309 1.36267 0.681337 0.731970i \(-0.261399\pi\)
0.681337 + 0.731970i \(0.261399\pi\)
\(194\) 0 0
\(195\) 5.56155 0.398271
\(196\) 0 0
\(197\) 17.8078 1.26875 0.634375 0.773025i \(-0.281257\pi\)
0.634375 + 0.773025i \(0.281257\pi\)
\(198\) 0 0
\(199\) 18.0000 1.27599 0.637993 0.770042i \(-0.279765\pi\)
0.637993 + 0.770042i \(0.279765\pi\)
\(200\) 0 0
\(201\) −11.6155 −0.819296
\(202\) 0 0
\(203\) 20.8078 1.46042
\(204\) 0 0
\(205\) −4.12311 −0.287970
\(206\) 0 0
\(207\) 0.561553 0.0390306
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −9.93087 −0.683669 −0.341835 0.939760i \(-0.611048\pi\)
−0.341835 + 0.939760i \(0.611048\pi\)
\(212\) 0 0
\(213\) −7.80776 −0.534979
\(214\) 0 0
\(215\) −6.24621 −0.425988
\(216\) 0 0
\(217\) −0.315342 −0.0214068
\(218\) 0 0
\(219\) 11.8078 0.797895
\(220\) 0 0
\(221\) −5.12311 −0.344617
\(222\) 0 0
\(223\) 18.8769 1.26409 0.632045 0.774932i \(-0.282216\pi\)
0.632045 + 0.774932i \(0.282216\pi\)
\(224\) 0 0
\(225\) −0.561553 −0.0374369
\(226\) 0 0
\(227\) 18.2462 1.21104 0.605522 0.795829i \(-0.292964\pi\)
0.605522 + 0.795829i \(0.292964\pi\)
\(228\) 0 0
\(229\) −5.75379 −0.380221 −0.190111 0.981763i \(-0.560885\pi\)
−0.190111 + 0.981763i \(0.560885\pi\)
\(230\) 0 0
\(231\) 8.00000 0.526361
\(232\) 0 0
\(233\) 28.3002 1.85401 0.927003 0.375053i \(-0.122375\pi\)
0.927003 + 0.375053i \(0.122375\pi\)
\(234\) 0 0
\(235\) 8.68466 0.566525
\(236\) 0 0
\(237\) −1.36932 −0.0889467
\(238\) 0 0
\(239\) −7.87689 −0.509514 −0.254757 0.967005i \(-0.581995\pi\)
−0.254757 + 0.967005i \(0.581995\pi\)
\(240\) 0 0
\(241\) −18.4924 −1.19120 −0.595601 0.803281i \(-0.703086\pi\)
−0.595601 + 0.803281i \(0.703086\pi\)
\(242\) 0 0
\(243\) 5.75379 0.369106
\(244\) 0 0
\(245\) 0.438447 0.0280114
\(246\) 0 0
\(247\) 7.12311 0.453232
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) 9.12311 0.575845 0.287923 0.957654i \(-0.407035\pi\)
0.287923 + 0.957654i \(0.407035\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) 0 0
\(255\) −2.24621 −0.140663
\(256\) 0 0
\(257\) −0.684658 −0.0427078 −0.0213539 0.999772i \(-0.506798\pi\)
−0.0213539 + 0.999772i \(0.506798\pi\)
\(258\) 0 0
\(259\) −1.43845 −0.0893808
\(260\) 0 0
\(261\) 4.56155 0.282353
\(262\) 0 0
\(263\) −14.3153 −0.882722 −0.441361 0.897330i \(-0.645504\pi\)
−0.441361 + 0.897330i \(0.645504\pi\)
\(264\) 0 0
\(265\) −8.56155 −0.525932
\(266\) 0 0
\(267\) 12.4924 0.764524
\(268\) 0 0
\(269\) −27.4924 −1.67624 −0.838121 0.545484i \(-0.816346\pi\)
−0.838121 + 0.545484i \(0.816346\pi\)
\(270\) 0 0
\(271\) 24.1771 1.46865 0.734327 0.678796i \(-0.237498\pi\)
0.734327 + 0.678796i \(0.237498\pi\)
\(272\) 0 0
\(273\) 14.2462 0.862220
\(274\) 0 0
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) −20.4384 −1.22803 −0.614014 0.789295i \(-0.710446\pi\)
−0.614014 + 0.789295i \(0.710446\pi\)
\(278\) 0 0
\(279\) −0.0691303 −0.00413872
\(280\) 0 0
\(281\) −9.12311 −0.544239 −0.272119 0.962263i \(-0.587725\pi\)
−0.272119 + 0.962263i \(0.587725\pi\)
\(282\) 0 0
\(283\) 3.93087 0.233666 0.116833 0.993152i \(-0.462726\pi\)
0.116833 + 0.993152i \(0.462726\pi\)
\(284\) 0 0
\(285\) 3.12311 0.184997
\(286\) 0 0
\(287\) −10.5616 −0.623429
\(288\) 0 0
\(289\) −14.9309 −0.878286
\(290\) 0 0
\(291\) 8.00000 0.468968
\(292\) 0 0
\(293\) 14.5616 0.850695 0.425347 0.905030i \(-0.360152\pi\)
0.425347 + 0.905030i \(0.360152\pi\)
\(294\) 0 0
\(295\) 1.43845 0.0837496
\(296\) 0 0
\(297\) 11.1231 0.645428
\(298\) 0 0
\(299\) 3.56155 0.205970
\(300\) 0 0
\(301\) −16.0000 −0.922225
\(302\) 0 0
\(303\) 16.8769 0.969552
\(304\) 0 0
\(305\) 0.876894 0.0502108
\(306\) 0 0
\(307\) −15.3693 −0.877173 −0.438587 0.898689i \(-0.644521\pi\)
−0.438587 + 0.898689i \(0.644521\pi\)
\(308\) 0 0
\(309\) −22.2462 −1.26554
\(310\) 0 0
\(311\) −4.19224 −0.237720 −0.118860 0.992911i \(-0.537924\pi\)
−0.118860 + 0.992911i \(0.537924\pi\)
\(312\) 0 0
\(313\) −13.9309 −0.787419 −0.393710 0.919235i \(-0.628808\pi\)
−0.393710 + 0.919235i \(0.628808\pi\)
\(314\) 0 0
\(315\) −1.43845 −0.0810473
\(316\) 0 0
\(317\) 25.3693 1.42488 0.712441 0.701732i \(-0.247589\pi\)
0.712441 + 0.701732i \(0.247589\pi\)
\(318\) 0 0
\(319\) 16.2462 0.909613
\(320\) 0 0
\(321\) −2.63068 −0.146830
\(322\) 0 0
\(323\) −2.87689 −0.160075
\(324\) 0 0
\(325\) −3.56155 −0.197559
\(326\) 0 0
\(327\) −1.75379 −0.0969847
\(328\) 0 0
\(329\) 22.2462 1.22647
\(330\) 0 0
\(331\) −3.49242 −0.191961 −0.0959805 0.995383i \(-0.530599\pi\)
−0.0959805 + 0.995383i \(0.530599\pi\)
\(332\) 0 0
\(333\) −0.315342 −0.0172806
\(334\) 0 0
\(335\) 7.43845 0.406406
\(336\) 0 0
\(337\) 13.1231 0.714861 0.357431 0.933940i \(-0.383653\pi\)
0.357431 + 0.933940i \(0.383653\pi\)
\(338\) 0 0
\(339\) 8.49242 0.461245
\(340\) 0 0
\(341\) −0.246211 −0.0133331
\(342\) 0 0
\(343\) 19.0540 1.02882
\(344\) 0 0
\(345\) 1.56155 0.0840712
\(346\) 0 0
\(347\) −14.2462 −0.764777 −0.382388 0.924002i \(-0.624898\pi\)
−0.382388 + 0.924002i \(0.624898\pi\)
\(348\) 0 0
\(349\) −4.12311 −0.220705 −0.110352 0.993893i \(-0.535198\pi\)
−0.110352 + 0.993893i \(0.535198\pi\)
\(350\) 0 0
\(351\) 19.8078 1.05726
\(352\) 0 0
\(353\) 4.19224 0.223130 0.111565 0.993757i \(-0.464414\pi\)
0.111565 + 0.993757i \(0.464414\pi\)
\(354\) 0 0
\(355\) 5.00000 0.265372
\(356\) 0 0
\(357\) −5.75379 −0.304523
\(358\) 0 0
\(359\) 11.1231 0.587055 0.293528 0.955951i \(-0.405171\pi\)
0.293528 + 0.955951i \(0.405171\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) −10.9309 −0.573722
\(364\) 0 0
\(365\) −7.56155 −0.395790
\(366\) 0 0
\(367\) −11.1922 −0.584230 −0.292115 0.956383i \(-0.594359\pi\)
−0.292115 + 0.956383i \(0.594359\pi\)
\(368\) 0 0
\(369\) −2.31534 −0.120532
\(370\) 0 0
\(371\) −21.9309 −1.13859
\(372\) 0 0
\(373\) 24.7386 1.28092 0.640459 0.767992i \(-0.278744\pi\)
0.640459 + 0.767992i \(0.278744\pi\)
\(374\) 0 0
\(375\) −1.56155 −0.0806382
\(376\) 0 0
\(377\) 28.9309 1.49002
\(378\) 0 0
\(379\) −32.9848 −1.69432 −0.847159 0.531340i \(-0.821689\pi\)
−0.847159 + 0.531340i \(0.821689\pi\)
\(380\) 0 0
\(381\) −30.9309 −1.58464
\(382\) 0 0
\(383\) −13.9309 −0.711834 −0.355917 0.934518i \(-0.615831\pi\)
−0.355917 + 0.934518i \(0.615831\pi\)
\(384\) 0 0
\(385\) −5.12311 −0.261098
\(386\) 0 0
\(387\) −3.50758 −0.178300
\(388\) 0 0
\(389\) −18.8769 −0.957097 −0.478548 0.878061i \(-0.658837\pi\)
−0.478548 + 0.878061i \(0.658837\pi\)
\(390\) 0 0
\(391\) −1.43845 −0.0727454
\(392\) 0 0
\(393\) −29.5616 −1.49118
\(394\) 0 0
\(395\) 0.876894 0.0441213
\(396\) 0 0
\(397\) −21.1771 −1.06285 −0.531424 0.847106i \(-0.678343\pi\)
−0.531424 + 0.847106i \(0.678343\pi\)
\(398\) 0 0
\(399\) 8.00000 0.400501
\(400\) 0 0
\(401\) −32.7386 −1.63489 −0.817445 0.576007i \(-0.804610\pi\)
−0.817445 + 0.576007i \(0.804610\pi\)
\(402\) 0 0
\(403\) −0.438447 −0.0218406
\(404\) 0 0
\(405\) 7.00000 0.347833
\(406\) 0 0
\(407\) −1.12311 −0.0556703
\(408\) 0 0
\(409\) 5.00000 0.247234 0.123617 0.992330i \(-0.460551\pi\)
0.123617 + 0.992330i \(0.460551\pi\)
\(410\) 0 0
\(411\) 33.7538 1.66495
\(412\) 0 0
\(413\) 3.68466 0.181310
\(414\) 0 0
\(415\) −7.68466 −0.377225
\(416\) 0 0
\(417\) −16.1922 −0.792937
\(418\) 0 0
\(419\) −21.6155 −1.05599 −0.527994 0.849248i \(-0.677056\pi\)
−0.527994 + 0.849248i \(0.677056\pi\)
\(420\) 0 0
\(421\) −30.8769 −1.50485 −0.752424 0.658679i \(-0.771115\pi\)
−0.752424 + 0.658679i \(0.771115\pi\)
\(422\) 0 0
\(423\) 4.87689 0.237123
\(424\) 0 0
\(425\) 1.43845 0.0697749
\(426\) 0 0
\(427\) 2.24621 0.108702
\(428\) 0 0
\(429\) 11.1231 0.537029
\(430\) 0 0
\(431\) 30.2462 1.45691 0.728454 0.685094i \(-0.240239\pi\)
0.728454 + 0.685094i \(0.240239\pi\)
\(432\) 0 0
\(433\) −13.6847 −0.657643 −0.328821 0.944392i \(-0.606651\pi\)
−0.328821 + 0.944392i \(0.606651\pi\)
\(434\) 0 0
\(435\) 12.6847 0.608183
\(436\) 0 0
\(437\) 2.00000 0.0956730
\(438\) 0 0
\(439\) −3.80776 −0.181735 −0.0908673 0.995863i \(-0.528964\pi\)
−0.0908673 + 0.995863i \(0.528964\pi\)
\(440\) 0 0
\(441\) 0.246211 0.0117243
\(442\) 0 0
\(443\) 22.0540 1.04782 0.523908 0.851775i \(-0.324474\pi\)
0.523908 + 0.851775i \(0.324474\pi\)
\(444\) 0 0
\(445\) −8.00000 −0.379236
\(446\) 0 0
\(447\) 1.36932 0.0647665
\(448\) 0 0
\(449\) 18.3153 0.864354 0.432177 0.901789i \(-0.357745\pi\)
0.432177 + 0.901789i \(0.357745\pi\)
\(450\) 0 0
\(451\) −8.24621 −0.388299
\(452\) 0 0
\(453\) 2.43845 0.114568
\(454\) 0 0
\(455\) −9.12311 −0.427698
\(456\) 0 0
\(457\) −17.9309 −0.838771 −0.419385 0.907808i \(-0.637754\pi\)
−0.419385 + 0.907808i \(0.637754\pi\)
\(458\) 0 0
\(459\) −8.00000 −0.373408
\(460\) 0 0
\(461\) −39.1771 −1.82466 −0.912329 0.409457i \(-0.865718\pi\)
−0.912329 + 0.409457i \(0.865718\pi\)
\(462\) 0 0
\(463\) −29.1231 −1.35347 −0.676733 0.736229i \(-0.736605\pi\)
−0.676733 + 0.736229i \(0.736605\pi\)
\(464\) 0 0
\(465\) −0.192236 −0.00891473
\(466\) 0 0
\(467\) −9.68466 −0.448153 −0.224076 0.974572i \(-0.571936\pi\)
−0.224076 + 0.974572i \(0.571936\pi\)
\(468\) 0 0
\(469\) 19.0540 0.879831
\(470\) 0 0
\(471\) −24.4924 −1.12855
\(472\) 0 0
\(473\) −12.4924 −0.574402
\(474\) 0 0
\(475\) −2.00000 −0.0917663
\(476\) 0 0
\(477\) −4.80776 −0.220132
\(478\) 0 0
\(479\) −4.00000 −0.182765 −0.0913823 0.995816i \(-0.529129\pi\)
−0.0913823 + 0.995816i \(0.529129\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) 4.00000 0.182006
\(484\) 0 0
\(485\) −5.12311 −0.232628
\(486\) 0 0
\(487\) 0.684658 0.0310248 0.0155124 0.999880i \(-0.495062\pi\)
0.0155124 + 0.999880i \(0.495062\pi\)
\(488\) 0 0
\(489\) −10.4384 −0.472043
\(490\) 0 0
\(491\) −12.6155 −0.569331 −0.284665 0.958627i \(-0.591882\pi\)
−0.284665 + 0.958627i \(0.591882\pi\)
\(492\) 0 0
\(493\) −11.6847 −0.526251
\(494\) 0 0
\(495\) −1.12311 −0.0504798
\(496\) 0 0
\(497\) 12.8078 0.574507
\(498\) 0 0
\(499\) −39.7386 −1.77895 −0.889473 0.456988i \(-0.848928\pi\)
−0.889473 + 0.456988i \(0.848928\pi\)
\(500\) 0 0
\(501\) 12.4924 0.558120
\(502\) 0 0
\(503\) 15.4384 0.688366 0.344183 0.938903i \(-0.388156\pi\)
0.344183 + 0.938903i \(0.388156\pi\)
\(504\) 0 0
\(505\) −10.8078 −0.480939
\(506\) 0 0
\(507\) −0.492423 −0.0218693
\(508\) 0 0
\(509\) −24.4384 −1.08322 −0.541608 0.840631i \(-0.682184\pi\)
−0.541608 + 0.840631i \(0.682184\pi\)
\(510\) 0 0
\(511\) −19.3693 −0.856848
\(512\) 0 0
\(513\) 11.1231 0.491097
\(514\) 0 0
\(515\) 14.2462 0.627763
\(516\) 0 0
\(517\) 17.3693 0.763902
\(518\) 0 0
\(519\) −11.1231 −0.488250
\(520\) 0 0
\(521\) 23.8617 1.04540 0.522701 0.852516i \(-0.324924\pi\)
0.522701 + 0.852516i \(0.324924\pi\)
\(522\) 0 0
\(523\) 10.2462 0.448036 0.224018 0.974585i \(-0.428083\pi\)
0.224018 + 0.974585i \(0.428083\pi\)
\(524\) 0 0
\(525\) −4.00000 −0.174574
\(526\) 0 0
\(527\) 0.177081 0.00771377
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 0.807764 0.0350540
\(532\) 0 0
\(533\) −14.6847 −0.636063
\(534\) 0 0
\(535\) 1.68466 0.0728341
\(536\) 0 0
\(537\) −11.4233 −0.492951
\(538\) 0 0
\(539\) 0.876894 0.0377705
\(540\) 0 0
\(541\) 16.0540 0.690214 0.345107 0.938563i \(-0.387843\pi\)
0.345107 + 0.938563i \(0.387843\pi\)
\(542\) 0 0
\(543\) −13.8617 −0.594864
\(544\) 0 0
\(545\) 1.12311 0.0481086
\(546\) 0 0
\(547\) −7.31534 −0.312781 −0.156391 0.987695i \(-0.549986\pi\)
−0.156391 + 0.987695i \(0.549986\pi\)
\(548\) 0 0
\(549\) 0.492423 0.0210161
\(550\) 0 0
\(551\) 16.2462 0.692112
\(552\) 0 0
\(553\) 2.24621 0.0955186
\(554\) 0 0
\(555\) −0.876894 −0.0372221
\(556\) 0 0
\(557\) −21.3002 −0.902518 −0.451259 0.892393i \(-0.649025\pi\)
−0.451259 + 0.892393i \(0.649025\pi\)
\(558\) 0 0
\(559\) −22.2462 −0.940914
\(560\) 0 0
\(561\) −4.49242 −0.189670
\(562\) 0 0
\(563\) −11.1922 −0.471697 −0.235848 0.971790i \(-0.575787\pi\)
−0.235848 + 0.971790i \(0.575787\pi\)
\(564\) 0 0
\(565\) −5.43845 −0.228797
\(566\) 0 0
\(567\) 17.9309 0.753026
\(568\) 0 0
\(569\) 44.7386 1.87554 0.937771 0.347256i \(-0.112886\pi\)
0.937771 + 0.347256i \(0.112886\pi\)
\(570\) 0 0
\(571\) −30.7386 −1.28637 −0.643186 0.765710i \(-0.722388\pi\)
−0.643186 + 0.765710i \(0.722388\pi\)
\(572\) 0 0
\(573\) −4.87689 −0.203735
\(574\) 0 0
\(575\) −1.00000 −0.0417029
\(576\) 0 0
\(577\) −7.31534 −0.304542 −0.152271 0.988339i \(-0.548659\pi\)
−0.152271 + 0.988339i \(0.548659\pi\)
\(578\) 0 0
\(579\) 29.5616 1.22854
\(580\) 0 0
\(581\) −19.6847 −0.816657
\(582\) 0 0
\(583\) −17.1231 −0.709167
\(584\) 0 0
\(585\) −2.00000 −0.0826898
\(586\) 0 0
\(587\) −10.3002 −0.425134 −0.212567 0.977146i \(-0.568182\pi\)
−0.212567 + 0.977146i \(0.568182\pi\)
\(588\) 0 0
\(589\) −0.246211 −0.0101450
\(590\) 0 0
\(591\) 27.8078 1.14386
\(592\) 0 0
\(593\) −42.3542 −1.73928 −0.869638 0.493689i \(-0.835648\pi\)
−0.869638 + 0.493689i \(0.835648\pi\)
\(594\) 0 0
\(595\) 3.68466 0.151056
\(596\) 0 0
\(597\) 28.1080 1.15038
\(598\) 0 0
\(599\) −16.0000 −0.653742 −0.326871 0.945069i \(-0.605994\pi\)
−0.326871 + 0.945069i \(0.605994\pi\)
\(600\) 0 0
\(601\) 16.8617 0.687805 0.343902 0.939005i \(-0.388251\pi\)
0.343902 + 0.939005i \(0.388251\pi\)
\(602\) 0 0
\(603\) 4.17708 0.170104
\(604\) 0 0
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) 36.0000 1.46119 0.730597 0.682808i \(-0.239242\pi\)
0.730597 + 0.682808i \(0.239242\pi\)
\(608\) 0 0
\(609\) 32.4924 1.31666
\(610\) 0 0
\(611\) 30.9309 1.25133
\(612\) 0 0
\(613\) −9.61553 −0.388368 −0.194184 0.980965i \(-0.562206\pi\)
−0.194184 + 0.980965i \(0.562206\pi\)
\(614\) 0 0
\(615\) −6.43845 −0.259623
\(616\) 0 0
\(617\) −7.30019 −0.293894 −0.146947 0.989144i \(-0.546945\pi\)
−0.146947 + 0.989144i \(0.546945\pi\)
\(618\) 0 0
\(619\) 44.4924 1.78830 0.894151 0.447766i \(-0.147780\pi\)
0.894151 + 0.447766i \(0.147780\pi\)
\(620\) 0 0
\(621\) 5.56155 0.223177
\(622\) 0 0
\(623\) −20.4924 −0.821012
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 6.24621 0.249450
\(628\) 0 0
\(629\) 0.807764 0.0322077
\(630\) 0 0
\(631\) 14.7386 0.586736 0.293368 0.956000i \(-0.405224\pi\)
0.293368 + 0.956000i \(0.405224\pi\)
\(632\) 0 0
\(633\) −15.5076 −0.616371
\(634\) 0 0
\(635\) 19.8078 0.786047
\(636\) 0 0
\(637\) 1.56155 0.0618710
\(638\) 0 0
\(639\) 2.80776 0.111073
\(640\) 0 0
\(641\) 2.87689 0.113630 0.0568152 0.998385i \(-0.481905\pi\)
0.0568152 + 0.998385i \(0.481905\pi\)
\(642\) 0 0
\(643\) −22.1771 −0.874579 −0.437289 0.899321i \(-0.644061\pi\)
−0.437289 + 0.899321i \(0.644061\pi\)
\(644\) 0 0
\(645\) −9.75379 −0.384055
\(646\) 0 0
\(647\) 11.1771 0.439416 0.219708 0.975566i \(-0.429489\pi\)
0.219708 + 0.975566i \(0.429489\pi\)
\(648\) 0 0
\(649\) 2.87689 0.112928
\(650\) 0 0
\(651\) −0.492423 −0.0192996
\(652\) 0 0
\(653\) 29.4233 1.15142 0.575711 0.817653i \(-0.304725\pi\)
0.575711 + 0.817653i \(0.304725\pi\)
\(654\) 0 0
\(655\) 18.9309 0.739690
\(656\) 0 0
\(657\) −4.24621 −0.165660
\(658\) 0 0
\(659\) −29.6155 −1.15366 −0.576829 0.816865i \(-0.695710\pi\)
−0.576829 + 0.816865i \(0.695710\pi\)
\(660\) 0 0
\(661\) 27.7538 1.07950 0.539749 0.841826i \(-0.318519\pi\)
0.539749 + 0.841826i \(0.318519\pi\)
\(662\) 0 0
\(663\) −8.00000 −0.310694
\(664\) 0 0
\(665\) −5.12311 −0.198666
\(666\) 0 0
\(667\) 8.12311 0.314528
\(668\) 0 0
\(669\) 29.4773 1.13966
\(670\) 0 0
\(671\) 1.75379 0.0677043
\(672\) 0 0
\(673\) −16.1922 −0.624165 −0.312082 0.950055i \(-0.601027\pi\)
−0.312082 + 0.950055i \(0.601027\pi\)
\(674\) 0 0
\(675\) −5.56155 −0.214064
\(676\) 0 0
\(677\) 5.68466 0.218479 0.109240 0.994015i \(-0.465158\pi\)
0.109240 + 0.994015i \(0.465158\pi\)
\(678\) 0 0
\(679\) −13.1231 −0.503619
\(680\) 0 0
\(681\) 28.4924 1.09183
\(682\) 0 0
\(683\) 6.93087 0.265202 0.132601 0.991169i \(-0.457667\pi\)
0.132601 + 0.991169i \(0.457667\pi\)
\(684\) 0 0
\(685\) −21.6155 −0.825887
\(686\) 0 0
\(687\) −8.98485 −0.342793
\(688\) 0 0
\(689\) −30.4924 −1.16167
\(690\) 0 0
\(691\) −0.492423 −0.0187326 −0.00936632 0.999956i \(-0.502981\pi\)
−0.00936632 + 0.999956i \(0.502981\pi\)
\(692\) 0 0
\(693\) −2.87689 −0.109284
\(694\) 0 0
\(695\) 10.3693 0.393331
\(696\) 0 0
\(697\) 5.93087 0.224648
\(698\) 0 0
\(699\) 44.1922 1.67150
\(700\) 0 0
\(701\) 9.75379 0.368396 0.184198 0.982889i \(-0.441031\pi\)
0.184198 + 0.982889i \(0.441031\pi\)
\(702\) 0 0
\(703\) −1.12311 −0.0423587
\(704\) 0 0
\(705\) 13.5616 0.510758
\(706\) 0 0
\(707\) −27.6847 −1.04119
\(708\) 0 0
\(709\) −16.0000 −0.600893 −0.300446 0.953799i \(-0.597136\pi\)
−0.300446 + 0.953799i \(0.597136\pi\)
\(710\) 0 0
\(711\) 0.492423 0.0184673
\(712\) 0 0
\(713\) −0.123106 −0.00461034
\(714\) 0 0
\(715\) −7.12311 −0.266389
\(716\) 0 0
\(717\) −12.3002 −0.459359
\(718\) 0 0
\(719\) −3.68466 −0.137415 −0.0687073 0.997637i \(-0.521887\pi\)
−0.0687073 + 0.997637i \(0.521887\pi\)
\(720\) 0 0
\(721\) 36.4924 1.35905
\(722\) 0 0
\(723\) −28.8769 −1.07394
\(724\) 0 0
\(725\) −8.12311 −0.301685
\(726\) 0 0
\(727\) 11.4384 0.424229 0.212114 0.977245i \(-0.431965\pi\)
0.212114 + 0.977245i \(0.431965\pi\)
\(728\) 0 0
\(729\) 29.9848 1.11055
\(730\) 0 0
\(731\) 8.98485 0.332316
\(732\) 0 0
\(733\) 40.1771 1.48397 0.741987 0.670414i \(-0.233884\pi\)
0.741987 + 0.670414i \(0.233884\pi\)
\(734\) 0 0
\(735\) 0.684658 0.0252540
\(736\) 0 0
\(737\) 14.8769 0.547997
\(738\) 0 0
\(739\) 1.49242 0.0548996 0.0274498 0.999623i \(-0.491261\pi\)
0.0274498 + 0.999623i \(0.491261\pi\)
\(740\) 0 0
\(741\) 11.1231 0.408617
\(742\) 0 0
\(743\) −46.2462 −1.69661 −0.848304 0.529509i \(-0.822376\pi\)
−0.848304 + 0.529509i \(0.822376\pi\)
\(744\) 0 0
\(745\) −0.876894 −0.0321269
\(746\) 0 0
\(747\) −4.31534 −0.157890
\(748\) 0 0
\(749\) 4.31534 0.157679
\(750\) 0 0
\(751\) 44.3542 1.61851 0.809253 0.587460i \(-0.199872\pi\)
0.809253 + 0.587460i \(0.199872\pi\)
\(752\) 0 0
\(753\) 14.2462 0.519161
\(754\) 0 0
\(755\) −1.56155 −0.0568307
\(756\) 0 0
\(757\) −25.5464 −0.928500 −0.464250 0.885704i \(-0.653676\pi\)
−0.464250 + 0.885704i \(0.653676\pi\)
\(758\) 0 0
\(759\) 3.12311 0.113362
\(760\) 0 0
\(761\) 21.9848 0.796950 0.398475 0.917179i \(-0.369540\pi\)
0.398475 + 0.917179i \(0.369540\pi\)
\(762\) 0 0
\(763\) 2.87689 0.104151
\(764\) 0 0
\(765\) 0.807764 0.0292048
\(766\) 0 0
\(767\) 5.12311 0.184985
\(768\) 0 0
\(769\) −7.61553 −0.274623 −0.137311 0.990528i \(-0.543846\pi\)
−0.137311 + 0.990528i \(0.543846\pi\)
\(770\) 0 0
\(771\) −1.06913 −0.0385038
\(772\) 0 0
\(773\) −29.1231 −1.04749 −0.523743 0.851877i \(-0.675465\pi\)
−0.523743 + 0.851877i \(0.675465\pi\)
\(774\) 0 0
\(775\) 0.123106 0.00442208
\(776\) 0 0
\(777\) −2.24621 −0.0805824
\(778\) 0 0
\(779\) −8.24621 −0.295451
\(780\) 0 0
\(781\) 10.0000 0.357828
\(782\) 0 0
\(783\) 45.1771 1.61450
\(784\) 0 0
\(785\) 15.6847 0.559809
\(786\) 0 0
\(787\) −33.3002 −1.18702 −0.593512 0.804825i \(-0.702259\pi\)
−0.593512 + 0.804825i \(0.702259\pi\)
\(788\) 0 0
\(789\) −22.3542 −0.795829
\(790\) 0 0
\(791\) −13.9309 −0.495325
\(792\) 0 0
\(793\) 3.12311 0.110905
\(794\) 0 0
\(795\) −13.3693 −0.474161
\(796\) 0 0
\(797\) 25.1922 0.892355 0.446177 0.894945i \(-0.352785\pi\)
0.446177 + 0.894945i \(0.352785\pi\)
\(798\) 0 0
\(799\) −12.4924 −0.441950
\(800\) 0 0
\(801\) −4.49242 −0.158732
\(802\) 0 0
\(803\) −15.1231 −0.533683
\(804\) 0 0
\(805\) −2.56155 −0.0902829
\(806\) 0 0
\(807\) −42.9309 −1.51124
\(808\) 0 0
\(809\) 50.8078 1.78631 0.893153 0.449753i \(-0.148488\pi\)
0.893153 + 0.449753i \(0.148488\pi\)
\(810\) 0 0
\(811\) 14.3693 0.504575 0.252287 0.967652i \(-0.418817\pi\)
0.252287 + 0.967652i \(0.418817\pi\)
\(812\) 0 0
\(813\) 37.7538 1.32408
\(814\) 0 0
\(815\) 6.68466 0.234153
\(816\) 0 0
\(817\) −12.4924 −0.437055
\(818\) 0 0
\(819\) −5.12311 −0.179016
\(820\) 0 0
\(821\) 38.4924 1.34339 0.671697 0.740826i \(-0.265566\pi\)
0.671697 + 0.740826i \(0.265566\pi\)
\(822\) 0 0
\(823\) −33.1771 −1.15648 −0.578240 0.815867i \(-0.696260\pi\)
−0.578240 + 0.815867i \(0.696260\pi\)
\(824\) 0 0
\(825\) −3.12311 −0.108733
\(826\) 0 0
\(827\) 28.3153 0.984621 0.492310 0.870420i \(-0.336152\pi\)
0.492310 + 0.870420i \(0.336152\pi\)
\(828\) 0 0
\(829\) −20.5616 −0.714132 −0.357066 0.934079i \(-0.616223\pi\)
−0.357066 + 0.934079i \(0.616223\pi\)
\(830\) 0 0
\(831\) −31.9157 −1.10714
\(832\) 0 0
\(833\) −0.630683 −0.0218519
\(834\) 0 0
\(835\) −8.00000 −0.276851
\(836\) 0 0
\(837\) −0.684658 −0.0236653
\(838\) 0 0
\(839\) −33.6155 −1.16054 −0.580268 0.814425i \(-0.697052\pi\)
−0.580268 + 0.814425i \(0.697052\pi\)
\(840\) 0 0
\(841\) 36.9848 1.27534
\(842\) 0 0
\(843\) −14.2462 −0.490666
\(844\) 0 0
\(845\) 0.315342 0.0108481
\(846\) 0 0
\(847\) 17.9309 0.616112
\(848\) 0 0
\(849\) 6.13826 0.210665
\(850\) 0 0
\(851\) −0.561553 −0.0192498
\(852\) 0 0
\(853\) −14.4924 −0.496211 −0.248106 0.968733i \(-0.579808\pi\)
−0.248106 + 0.968733i \(0.579808\pi\)
\(854\) 0 0
\(855\) −1.12311 −0.0384094
\(856\) 0 0
\(857\) −40.5464 −1.38504 −0.692519 0.721399i \(-0.743499\pi\)
−0.692519 + 0.721399i \(0.743499\pi\)
\(858\) 0 0
\(859\) −0.369317 −0.0126009 −0.00630046 0.999980i \(-0.502006\pi\)
−0.00630046 + 0.999980i \(0.502006\pi\)
\(860\) 0 0
\(861\) −16.4924 −0.562060
\(862\) 0 0
\(863\) 9.31534 0.317098 0.158549 0.987351i \(-0.449318\pi\)
0.158549 + 0.987351i \(0.449318\pi\)
\(864\) 0 0
\(865\) 7.12311 0.242193
\(866\) 0 0
\(867\) −23.3153 −0.791831
\(868\) 0 0
\(869\) 1.75379 0.0594932
\(870\) 0 0
\(871\) 26.4924 0.897661
\(872\) 0 0
\(873\) −2.87689 −0.0973681
\(874\) 0 0
\(875\) 2.56155 0.0865963
\(876\) 0 0
\(877\) −47.4773 −1.60319 −0.801597 0.597865i \(-0.796016\pi\)
−0.801597 + 0.597865i \(0.796016\pi\)
\(878\) 0 0
\(879\) 22.7386 0.766955
\(880\) 0 0
\(881\) 22.7386 0.766084 0.383042 0.923731i \(-0.374876\pi\)
0.383042 + 0.923731i \(0.374876\pi\)
\(882\) 0 0
\(883\) 44.9848 1.51386 0.756930 0.653496i \(-0.226698\pi\)
0.756930 + 0.653496i \(0.226698\pi\)
\(884\) 0 0
\(885\) 2.24621 0.0755056
\(886\) 0 0
\(887\) 43.1771 1.44974 0.724872 0.688883i \(-0.241899\pi\)
0.724872 + 0.688883i \(0.241899\pi\)
\(888\) 0 0
\(889\) 50.7386 1.70172
\(890\) 0 0
\(891\) 14.0000 0.469018
\(892\) 0 0
\(893\) 17.3693 0.581242
\(894\) 0 0
\(895\) 7.31534 0.244525
\(896\) 0 0
\(897\) 5.56155 0.185695
\(898\) 0 0
\(899\) −1.00000 −0.0333519
\(900\) 0 0
\(901\) 12.3153 0.410284
\(902\) 0 0
\(903\) −24.9848 −0.831444
\(904\) 0 0
\(905\) 8.87689 0.295078
\(906\) 0 0
\(907\) −24.4233 −0.810962 −0.405481 0.914103i \(-0.632896\pi\)
−0.405481 + 0.914103i \(0.632896\pi\)
\(908\) 0 0
\(909\) −6.06913 −0.201300
\(910\) 0 0
\(911\) 23.1231 0.766103 0.383051 0.923727i \(-0.374873\pi\)
0.383051 + 0.923727i \(0.374873\pi\)
\(912\) 0 0
\(913\) −15.3693 −0.508650
\(914\) 0 0
\(915\) 1.36932 0.0452682
\(916\) 0 0
\(917\) 48.4924 1.60136
\(918\) 0 0
\(919\) −20.4924 −0.675983 −0.337991 0.941149i \(-0.609747\pi\)
−0.337991 + 0.941149i \(0.609747\pi\)
\(920\) 0 0
\(921\) −24.0000 −0.790827
\(922\) 0 0
\(923\) 17.8078 0.586150
\(924\) 0 0
\(925\) 0.561553 0.0184637
\(926\) 0 0
\(927\) 8.00000 0.262754
\(928\) 0 0
\(929\) 0.261366 0.00857515 0.00428757 0.999991i \(-0.498635\pi\)
0.00428757 + 0.999991i \(0.498635\pi\)
\(930\) 0 0
\(931\) 0.876894 0.0287391
\(932\) 0 0
\(933\) −6.54640 −0.214319
\(934\) 0 0
\(935\) 2.87689 0.0940845
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 0 0
\(939\) −21.7538 −0.709908
\(940\) 0 0
\(941\) 32.4924 1.05922 0.529611 0.848240i \(-0.322338\pi\)
0.529611 + 0.848240i \(0.322338\pi\)
\(942\) 0 0
\(943\) −4.12311 −0.134267
\(944\) 0 0
\(945\) −14.2462 −0.463429
\(946\) 0 0
\(947\) 17.5616 0.570674 0.285337 0.958427i \(-0.407895\pi\)
0.285337 + 0.958427i \(0.407895\pi\)
\(948\) 0 0
\(949\) −26.9309 −0.874213
\(950\) 0 0
\(951\) 39.6155 1.28462
\(952\) 0 0
\(953\) −44.2462 −1.43328 −0.716638 0.697446i \(-0.754320\pi\)
−0.716638 + 0.697446i \(0.754320\pi\)
\(954\) 0 0
\(955\) 3.12311 0.101061
\(956\) 0 0
\(957\) 25.3693 0.820074
\(958\) 0 0
\(959\) −55.3693 −1.78797
\(960\) 0 0
\(961\) −30.9848 −0.999511
\(962\) 0 0
\(963\) 0.946025 0.0304852
\(964\) 0 0
\(965\) −18.9309 −0.609406
\(966\) 0 0
\(967\) 9.17708 0.295115 0.147558 0.989053i \(-0.452859\pi\)
0.147558 + 0.989053i \(0.452859\pi\)
\(968\) 0 0
\(969\) −4.49242 −0.144317
\(970\) 0 0
\(971\) −40.1080 −1.28713 −0.643563 0.765393i \(-0.722544\pi\)
−0.643563 + 0.765393i \(0.722544\pi\)
\(972\) 0 0
\(973\) 26.5616 0.851524
\(974\) 0 0
\(975\) −5.56155 −0.178112
\(976\) 0 0
\(977\) 53.6847 1.71752 0.858762 0.512374i \(-0.171234\pi\)
0.858762 + 0.512374i \(0.171234\pi\)
\(978\) 0 0
\(979\) −16.0000 −0.511362
\(980\) 0 0
\(981\) 0.630683 0.0201362
\(982\) 0 0
\(983\) 62.0388 1.97873 0.989366 0.145450i \(-0.0464631\pi\)
0.989366 + 0.145450i \(0.0464631\pi\)
\(984\) 0 0
\(985\) −17.8078 −0.567403
\(986\) 0 0
\(987\) 34.7386 1.10574
\(988\) 0 0
\(989\) −6.24621 −0.198618
\(990\) 0 0
\(991\) 22.5616 0.716691 0.358346 0.933589i \(-0.383341\pi\)
0.358346 + 0.933589i \(0.383341\pi\)
\(992\) 0 0
\(993\) −5.45360 −0.173065
\(994\) 0 0
\(995\) −18.0000 −0.570638
\(996\) 0 0
\(997\) 28.1080 0.890188 0.445094 0.895484i \(-0.353170\pi\)
0.445094 + 0.895484i \(0.353170\pi\)
\(998\) 0 0
\(999\) −3.12311 −0.0988107
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 920.2.a.e.1.2 2
3.2 odd 2 8280.2.a.bf.1.1 2
4.3 odd 2 1840.2.a.o.1.1 2
5.2 odd 4 4600.2.e.n.4049.2 4
5.3 odd 4 4600.2.e.n.4049.3 4
5.4 even 2 4600.2.a.t.1.1 2
8.3 odd 2 7360.2.a.bl.1.2 2
8.5 even 2 7360.2.a.bp.1.1 2
20.19 odd 2 9200.2.a.bq.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.a.e.1.2 2 1.1 even 1 trivial
1840.2.a.o.1.1 2 4.3 odd 2
4600.2.a.t.1.1 2 5.4 even 2
4600.2.e.n.4049.2 4 5.2 odd 4
4600.2.e.n.4049.3 4 5.3 odd 4
7360.2.a.bl.1.2 2 8.3 odd 2
7360.2.a.bp.1.1 2 8.5 even 2
8280.2.a.bf.1.1 2 3.2 odd 2
9200.2.a.bq.1.2 2 20.19 odd 2