L(s) = 1 | − 2.56·3-s + 1.56·7-s + 3.56·9-s + 2·11-s − 0.561·13-s − 5.56·17-s + 2·19-s − 4·21-s − 23-s − 1.43·27-s + 0.123·29-s + 8.12·31-s − 5.12·33-s + 3.56·37-s + 1.43·39-s − 4.12·41-s − 10.2·43-s + 3.68·47-s − 4.56·49-s + 14.2·51-s − 4.43·53-s − 5.12·57-s + 5.56·59-s − 9.12·61-s + 5.56·63-s − 11.5·67-s + 2.56·69-s + ⋯ |
L(s) = 1 | − 1.47·3-s + 0.590·7-s + 1.18·9-s + 0.603·11-s − 0.155·13-s − 1.34·17-s + 0.458·19-s − 0.872·21-s − 0.208·23-s − 0.276·27-s + 0.0228·29-s + 1.45·31-s − 0.891·33-s + 0.585·37-s + 0.230·39-s − 0.643·41-s − 1.56·43-s + 0.537·47-s − 0.651·49-s + 1.99·51-s − 0.609·53-s − 0.678·57-s + 0.724·59-s − 1.16·61-s + 0.700·63-s − 1.41·67-s + 0.308·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 23 | \( 1 + T \) |
good | 3 | \( 1 + 2.56T + 3T^{2} \) |
| 7 | \( 1 - 1.56T + 7T^{2} \) |
| 11 | \( 1 - 2T + 11T^{2} \) |
| 13 | \( 1 + 0.561T + 13T^{2} \) |
| 17 | \( 1 + 5.56T + 17T^{2} \) |
| 19 | \( 1 - 2T + 19T^{2} \) |
| 29 | \( 1 - 0.123T + 29T^{2} \) |
| 31 | \( 1 - 8.12T + 31T^{2} \) |
| 37 | \( 1 - 3.56T + 37T^{2} \) |
| 41 | \( 1 + 4.12T + 41T^{2} \) |
| 43 | \( 1 + 10.2T + 43T^{2} \) |
| 47 | \( 1 - 3.68T + 47T^{2} \) |
| 53 | \( 1 + 4.43T + 53T^{2} \) |
| 59 | \( 1 - 5.56T + 59T^{2} \) |
| 61 | \( 1 + 9.12T + 61T^{2} \) |
| 67 | \( 1 + 11.5T + 67T^{2} \) |
| 71 | \( 1 - 5T + 71T^{2} \) |
| 73 | \( 1 + 3.43T + 73T^{2} \) |
| 79 | \( 1 - 9.12T + 79T^{2} \) |
| 83 | \( 1 + 4.68T + 83T^{2} \) |
| 89 | \( 1 - 8T + 89T^{2} \) |
| 97 | \( 1 - 3.12T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.16192065730929202213912097384, −6.47259830934224116917751372546, −6.18192597524370587940477169572, −5.22116037407795759947282835345, −4.72670475861424113589724985353, −4.19779893021655536674084439223, −3.06489936847121350526971444981, −1.93597908794572034982698454926, −1.07473623487783211915639187462, 0,
1.07473623487783211915639187462, 1.93597908794572034982698454926, 3.06489936847121350526971444981, 4.19779893021655536674084439223, 4.72670475861424113589724985353, 5.22116037407795759947282835345, 6.18192597524370587940477169572, 6.47259830934224116917751372546, 7.16192065730929202213912097384