Properties

Label 2-9200-1.1-c1-0-125
Degree $2$
Conductor $9200$
Sign $-1$
Analytic cond. $73.4623$
Root an. cond. $8.57101$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.56·3-s + 1.56·7-s + 3.56·9-s + 2·11-s − 0.561·13-s − 5.56·17-s + 2·19-s − 4·21-s − 23-s − 1.43·27-s + 0.123·29-s + 8.12·31-s − 5.12·33-s + 3.56·37-s + 1.43·39-s − 4.12·41-s − 10.2·43-s + 3.68·47-s − 4.56·49-s + 14.2·51-s − 4.43·53-s − 5.12·57-s + 5.56·59-s − 9.12·61-s + 5.56·63-s − 11.5·67-s + 2.56·69-s + ⋯
L(s)  = 1  − 1.47·3-s + 0.590·7-s + 1.18·9-s + 0.603·11-s − 0.155·13-s − 1.34·17-s + 0.458·19-s − 0.872·21-s − 0.208·23-s − 0.276·27-s + 0.0228·29-s + 1.45·31-s − 0.891·33-s + 0.585·37-s + 0.230·39-s − 0.643·41-s − 1.56·43-s + 0.537·47-s − 0.651·49-s + 1.99·51-s − 0.609·53-s − 0.678·57-s + 0.724·59-s − 1.16·61-s + 0.700·63-s − 1.41·67-s + 0.308·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9200\)    =    \(2^{4} \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(73.4623\)
Root analytic conductor: \(8.57101\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 + T \)
good3 \( 1 + 2.56T + 3T^{2} \)
7 \( 1 - 1.56T + 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 + 0.561T + 13T^{2} \)
17 \( 1 + 5.56T + 17T^{2} \)
19 \( 1 - 2T + 19T^{2} \)
29 \( 1 - 0.123T + 29T^{2} \)
31 \( 1 - 8.12T + 31T^{2} \)
37 \( 1 - 3.56T + 37T^{2} \)
41 \( 1 + 4.12T + 41T^{2} \)
43 \( 1 + 10.2T + 43T^{2} \)
47 \( 1 - 3.68T + 47T^{2} \)
53 \( 1 + 4.43T + 53T^{2} \)
59 \( 1 - 5.56T + 59T^{2} \)
61 \( 1 + 9.12T + 61T^{2} \)
67 \( 1 + 11.5T + 67T^{2} \)
71 \( 1 - 5T + 71T^{2} \)
73 \( 1 + 3.43T + 73T^{2} \)
79 \( 1 - 9.12T + 79T^{2} \)
83 \( 1 + 4.68T + 83T^{2} \)
89 \( 1 - 8T + 89T^{2} \)
97 \( 1 - 3.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.16192065730929202213912097384, −6.47259830934224116917751372546, −6.18192597524370587940477169572, −5.22116037407795759947282835345, −4.72670475861424113589724985353, −4.19779893021655536674084439223, −3.06489936847121350526971444981, −1.93597908794572034982698454926, −1.07473623487783211915639187462, 0, 1.07473623487783211915639187462, 1.93597908794572034982698454926, 3.06489936847121350526971444981, 4.19779893021655536674084439223, 4.72670475861424113589724985353, 5.22116037407795759947282835345, 6.18192597524370587940477169572, 6.47259830934224116917751372546, 7.16192065730929202213912097384

Graph of the $Z$-function along the critical line