Properties

Label 9200.2.a.bq.1.1
Level $9200$
Weight $2$
Character 9200.1
Self dual yes
Analytic conductor $73.462$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9200,2,Mod(1,9200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9200.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9200 = 2^{4} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4623698596\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 920)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 9200.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.56155 q^{3} +1.56155 q^{7} +3.56155 q^{9} +2.00000 q^{11} -0.561553 q^{13} -5.56155 q^{17} +2.00000 q^{19} -4.00000 q^{21} -1.00000 q^{23} -1.43845 q^{27} +0.123106 q^{29} +8.12311 q^{31} -5.12311 q^{33} +3.56155 q^{37} +1.43845 q^{39} -4.12311 q^{41} -10.2462 q^{43} +3.68466 q^{47} -4.56155 q^{49} +14.2462 q^{51} -4.43845 q^{53} -5.12311 q^{57} +5.56155 q^{59} -9.12311 q^{61} +5.56155 q^{63} -11.5616 q^{67} +2.56155 q^{69} +5.00000 q^{71} -3.43845 q^{73} +3.12311 q^{77} +9.12311 q^{79} -7.00000 q^{81} -4.68466 q^{83} -0.315342 q^{87} +8.00000 q^{89} -0.876894 q^{91} -20.8078 q^{93} +3.12311 q^{97} +7.12311 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - q^{7} + 3 q^{9} + 4 q^{11} + 3 q^{13} - 7 q^{17} + 4 q^{19} - 8 q^{21} - 2 q^{23} - 7 q^{27} - 8 q^{29} + 8 q^{31} - 2 q^{33} + 3 q^{37} + 7 q^{39} - 4 q^{43} - 5 q^{47} - 5 q^{49} + 12 q^{51}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.56155 −1.47891 −0.739457 0.673204i \(-0.764917\pi\)
−0.739457 + 0.673204i \(0.764917\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.56155 0.590211 0.295106 0.955465i \(-0.404645\pi\)
0.295106 + 0.955465i \(0.404645\pi\)
\(8\) 0 0
\(9\) 3.56155 1.18718
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −0.561553 −0.155747 −0.0778734 0.996963i \(-0.524813\pi\)
−0.0778734 + 0.996963i \(0.524813\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.56155 −1.34887 −0.674437 0.738332i \(-0.735614\pi\)
−0.674437 + 0.738332i \(0.735614\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1.43845 −0.276829
\(28\) 0 0
\(29\) 0.123106 0.0228601 0.0114301 0.999935i \(-0.496362\pi\)
0.0114301 + 0.999935i \(0.496362\pi\)
\(30\) 0 0
\(31\) 8.12311 1.45895 0.729476 0.684006i \(-0.239764\pi\)
0.729476 + 0.684006i \(0.239764\pi\)
\(32\) 0 0
\(33\) −5.12311 −0.891818
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.56155 0.585516 0.292758 0.956187i \(-0.405427\pi\)
0.292758 + 0.956187i \(0.405427\pi\)
\(38\) 0 0
\(39\) 1.43845 0.230336
\(40\) 0 0
\(41\) −4.12311 −0.643921 −0.321960 0.946753i \(-0.604342\pi\)
−0.321960 + 0.946753i \(0.604342\pi\)
\(42\) 0 0
\(43\) −10.2462 −1.56253 −0.781266 0.624198i \(-0.785426\pi\)
−0.781266 + 0.624198i \(0.785426\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.68466 0.537463 0.268731 0.963215i \(-0.413396\pi\)
0.268731 + 0.963215i \(0.413396\pi\)
\(48\) 0 0
\(49\) −4.56155 −0.651650
\(50\) 0 0
\(51\) 14.2462 1.99487
\(52\) 0 0
\(53\) −4.43845 −0.609668 −0.304834 0.952406i \(-0.598601\pi\)
−0.304834 + 0.952406i \(0.598601\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −5.12311 −0.678572
\(58\) 0 0
\(59\) 5.56155 0.724053 0.362026 0.932168i \(-0.382085\pi\)
0.362026 + 0.932168i \(0.382085\pi\)
\(60\) 0 0
\(61\) −9.12311 −1.16809 −0.584047 0.811720i \(-0.698532\pi\)
−0.584047 + 0.811720i \(0.698532\pi\)
\(62\) 0 0
\(63\) 5.56155 0.700690
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −11.5616 −1.41247 −0.706234 0.707978i \(-0.749607\pi\)
−0.706234 + 0.707978i \(0.749607\pi\)
\(68\) 0 0
\(69\) 2.56155 0.308375
\(70\) 0 0
\(71\) 5.00000 0.593391 0.296695 0.954972i \(-0.404115\pi\)
0.296695 + 0.954972i \(0.404115\pi\)
\(72\) 0 0
\(73\) −3.43845 −0.402440 −0.201220 0.979546i \(-0.564491\pi\)
−0.201220 + 0.979546i \(0.564491\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.12311 0.355911
\(78\) 0 0
\(79\) 9.12311 1.02643 0.513215 0.858260i \(-0.328454\pi\)
0.513215 + 0.858260i \(0.328454\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) −4.68466 −0.514208 −0.257104 0.966384i \(-0.582768\pi\)
−0.257104 + 0.966384i \(0.582768\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −0.315342 −0.0338082
\(88\) 0 0
\(89\) 8.00000 0.847998 0.423999 0.905663i \(-0.360626\pi\)
0.423999 + 0.905663i \(0.360626\pi\)
\(90\) 0 0
\(91\) −0.876894 −0.0919235
\(92\) 0 0
\(93\) −20.8078 −2.15766
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.12311 0.317103 0.158552 0.987351i \(-0.449318\pi\)
0.158552 + 0.987351i \(0.449318\pi\)
\(98\) 0 0
\(99\) 7.12311 0.715899
\(100\) 0 0
\(101\) −9.80776 −0.975909 −0.487954 0.872869i \(-0.662257\pi\)
−0.487954 + 0.872869i \(0.662257\pi\)
\(102\) 0 0
\(103\) 2.24621 0.221326 0.110663 0.993858i \(-0.464703\pi\)
0.110663 + 0.993858i \(0.464703\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.6847 1.03292 0.516462 0.856310i \(-0.327249\pi\)
0.516462 + 0.856310i \(0.327249\pi\)
\(108\) 0 0
\(109\) 7.12311 0.682270 0.341135 0.940014i \(-0.389189\pi\)
0.341135 + 0.940014i \(0.389189\pi\)
\(110\) 0 0
\(111\) −9.12311 −0.865927
\(112\) 0 0
\(113\) −9.56155 −0.899475 −0.449738 0.893161i \(-0.648483\pi\)
−0.449738 + 0.893161i \(0.648483\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.00000 −0.184900
\(118\) 0 0
\(119\) −8.68466 −0.796121
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 10.5616 0.952303
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0.807764 0.0716775 0.0358387 0.999358i \(-0.488590\pi\)
0.0358387 + 0.999358i \(0.488590\pi\)
\(128\) 0 0
\(129\) 26.2462 2.31085
\(130\) 0 0
\(131\) −9.93087 −0.867664 −0.433832 0.900994i \(-0.642839\pi\)
−0.433832 + 0.900994i \(0.642839\pi\)
\(132\) 0 0
\(133\) 3.12311 0.270808
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 19.6155 1.67587 0.837934 0.545772i \(-0.183763\pi\)
0.837934 + 0.545772i \(0.183763\pi\)
\(138\) 0 0
\(139\) −14.3693 −1.21879 −0.609395 0.792867i \(-0.708588\pi\)
−0.609395 + 0.792867i \(0.708588\pi\)
\(140\) 0 0
\(141\) −9.43845 −0.794861
\(142\) 0 0
\(143\) −1.12311 −0.0939188
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 11.6847 0.963734
\(148\) 0 0
\(149\) 9.12311 0.747394 0.373697 0.927551i \(-0.378090\pi\)
0.373697 + 0.927551i \(0.378090\pi\)
\(150\) 0 0
\(151\) 2.56155 0.208456 0.104228 0.994553i \(-0.466763\pi\)
0.104228 + 0.994553i \(0.466763\pi\)
\(152\) 0 0
\(153\) −19.8078 −1.60136
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3.31534 0.264593 0.132297 0.991210i \(-0.457765\pi\)
0.132297 + 0.991210i \(0.457765\pi\)
\(158\) 0 0
\(159\) 11.3693 0.901645
\(160\) 0 0
\(161\) −1.56155 −0.123068
\(162\) 0 0
\(163\) 5.68466 0.445257 0.222628 0.974903i \(-0.428536\pi\)
0.222628 + 0.974903i \(0.428536\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) −12.6847 −0.975743
\(170\) 0 0
\(171\) 7.12311 0.544718
\(172\) 0 0
\(173\) −1.12311 −0.0853881 −0.0426941 0.999088i \(-0.513594\pi\)
−0.0426941 + 0.999088i \(0.513594\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −14.2462 −1.07081
\(178\) 0 0
\(179\) 19.6847 1.47130 0.735650 0.677362i \(-0.236877\pi\)
0.735650 + 0.677362i \(0.236877\pi\)
\(180\) 0 0
\(181\) −17.1231 −1.27275 −0.636375 0.771380i \(-0.719567\pi\)
−0.636375 + 0.771380i \(0.719567\pi\)
\(182\) 0 0
\(183\) 23.3693 1.72751
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −11.1231 −0.813402
\(188\) 0 0
\(189\) −2.24621 −0.163388
\(190\) 0 0
\(191\) −5.12311 −0.370695 −0.185347 0.982673i \(-0.559341\pi\)
−0.185347 + 0.982673i \(0.559341\pi\)
\(192\) 0 0
\(193\) 9.93087 0.714840 0.357420 0.933944i \(-0.383657\pi\)
0.357420 + 0.933944i \(0.383657\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.80776 0.200045 0.100022 0.994985i \(-0.468109\pi\)
0.100022 + 0.994985i \(0.468109\pi\)
\(198\) 0 0
\(199\) −18.0000 −1.27599 −0.637993 0.770042i \(-0.720235\pi\)
−0.637993 + 0.770042i \(0.720235\pi\)
\(200\) 0 0
\(201\) 29.6155 2.08892
\(202\) 0 0
\(203\) 0.192236 0.0134923
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −3.56155 −0.247545
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −18.9309 −1.30325 −0.651627 0.758539i \(-0.725913\pi\)
−0.651627 + 0.758539i \(0.725913\pi\)
\(212\) 0 0
\(213\) −12.8078 −0.877574
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 12.6847 0.861091
\(218\) 0 0
\(219\) 8.80776 0.595174
\(220\) 0 0
\(221\) 3.12311 0.210083
\(222\) 0 0
\(223\) 27.1231 1.81630 0.908149 0.418648i \(-0.137496\pi\)
0.908149 + 0.418648i \(0.137496\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.75379 0.116403 0.0582015 0.998305i \(-0.481463\pi\)
0.0582015 + 0.998305i \(0.481463\pi\)
\(228\) 0 0
\(229\) −22.2462 −1.47007 −0.735036 0.678029i \(-0.762835\pi\)
−0.735036 + 0.678029i \(0.762835\pi\)
\(230\) 0 0
\(231\) −8.00000 −0.526361
\(232\) 0 0
\(233\) 25.3002 1.65747 0.828735 0.559641i \(-0.189061\pi\)
0.828735 + 0.559641i \(0.189061\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −23.3693 −1.51800
\(238\) 0 0
\(239\) 16.1231 1.04292 0.521459 0.853277i \(-0.325388\pi\)
0.521459 + 0.853277i \(0.325388\pi\)
\(240\) 0 0
\(241\) 14.4924 0.933539 0.466769 0.884379i \(-0.345418\pi\)
0.466769 + 0.884379i \(0.345418\pi\)
\(242\) 0 0
\(243\) 22.2462 1.42710
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.12311 −0.0714615
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) −0.876894 −0.0553491 −0.0276745 0.999617i \(-0.508810\pi\)
−0.0276745 + 0.999617i \(0.508810\pi\)
\(252\) 0 0
\(253\) −2.00000 −0.125739
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.6847 −0.728869 −0.364434 0.931229i \(-0.618738\pi\)
−0.364434 + 0.931229i \(0.618738\pi\)
\(258\) 0 0
\(259\) 5.56155 0.345578
\(260\) 0 0
\(261\) 0.438447 0.0271392
\(262\) 0 0
\(263\) −26.6847 −1.64545 −0.822723 0.568442i \(-0.807546\pi\)
−0.822723 + 0.568442i \(0.807546\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −20.4924 −1.25412
\(268\) 0 0
\(269\) 5.49242 0.334879 0.167439 0.985882i \(-0.446450\pi\)
0.167439 + 0.985882i \(0.446450\pi\)
\(270\) 0 0
\(271\) 21.1771 1.28642 0.643208 0.765691i \(-0.277603\pi\)
0.643208 + 0.765691i \(0.277603\pi\)
\(272\) 0 0
\(273\) 2.24621 0.135947
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 24.5616 1.47576 0.737880 0.674932i \(-0.235827\pi\)
0.737880 + 0.674932i \(0.235827\pi\)
\(278\) 0 0
\(279\) 28.9309 1.73205
\(280\) 0 0
\(281\) −0.876894 −0.0523111 −0.0261556 0.999658i \(-0.508327\pi\)
−0.0261556 + 0.999658i \(0.508327\pi\)
\(282\) 0 0
\(283\) −24.9309 −1.48199 −0.740993 0.671513i \(-0.765645\pi\)
−0.740993 + 0.671513i \(0.765645\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.43845 −0.380050
\(288\) 0 0
\(289\) 13.9309 0.819463
\(290\) 0 0
\(291\) −8.00000 −0.468968
\(292\) 0 0
\(293\) −10.4384 −0.609821 −0.304910 0.952381i \(-0.598626\pi\)
−0.304910 + 0.952381i \(0.598626\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −2.87689 −0.166934
\(298\) 0 0
\(299\) 0.561553 0.0324754
\(300\) 0 0
\(301\) −16.0000 −0.922225
\(302\) 0 0
\(303\) 25.1231 1.44328
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 9.36932 0.534735 0.267368 0.963595i \(-0.413846\pi\)
0.267368 + 0.963595i \(0.413846\pi\)
\(308\) 0 0
\(309\) −5.75379 −0.327322
\(310\) 0 0
\(311\) 24.8078 1.40672 0.703360 0.710834i \(-0.251682\pi\)
0.703360 + 0.710834i \(0.251682\pi\)
\(312\) 0 0
\(313\) −14.9309 −0.843943 −0.421971 0.906609i \(-0.638662\pi\)
−0.421971 + 0.906609i \(0.638662\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.630683 −0.0354227 −0.0177113 0.999843i \(-0.505638\pi\)
−0.0177113 + 0.999843i \(0.505638\pi\)
\(318\) 0 0
\(319\) 0.246211 0.0137852
\(320\) 0 0
\(321\) −27.3693 −1.52761
\(322\) 0 0
\(323\) −11.1231 −0.618906
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −18.2462 −1.00902
\(328\) 0 0
\(329\) 5.75379 0.317217
\(330\) 0 0
\(331\) −29.4924 −1.62105 −0.810525 0.585704i \(-0.800818\pi\)
−0.810525 + 0.585704i \(0.800818\pi\)
\(332\) 0 0
\(333\) 12.6847 0.695115
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −4.87689 −0.265661 −0.132831 0.991139i \(-0.542407\pi\)
−0.132831 + 0.991139i \(0.542407\pi\)
\(338\) 0 0
\(339\) 24.4924 1.33025
\(340\) 0 0
\(341\) 16.2462 0.879782
\(342\) 0 0
\(343\) −18.0540 −0.974823
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.24621 0.120583 0.0602915 0.998181i \(-0.480797\pi\)
0.0602915 + 0.998181i \(0.480797\pi\)
\(348\) 0 0
\(349\) 4.12311 0.220705 0.110352 0.993893i \(-0.464802\pi\)
0.110352 + 0.993893i \(0.464802\pi\)
\(350\) 0 0
\(351\) 0.807764 0.0431153
\(352\) 0 0
\(353\) −24.8078 −1.32038 −0.660192 0.751097i \(-0.729525\pi\)
−0.660192 + 0.751097i \(0.729525\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 22.2462 1.17739
\(358\) 0 0
\(359\) −2.87689 −0.151837 −0.0759183 0.997114i \(-0.524189\pi\)
−0.0759183 + 0.997114i \(0.524189\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 17.9309 0.941127
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −31.8078 −1.66035 −0.830176 0.557502i \(-0.811760\pi\)
−0.830176 + 0.557502i \(0.811760\pi\)
\(368\) 0 0
\(369\) −14.6847 −0.764453
\(370\) 0 0
\(371\) −6.93087 −0.359833
\(372\) 0 0
\(373\) 24.7386 1.28092 0.640459 0.767992i \(-0.278744\pi\)
0.640459 + 0.767992i \(0.278744\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.0691303 −0.00356039
\(378\) 0 0
\(379\) −32.9848 −1.69432 −0.847159 0.531340i \(-0.821689\pi\)
−0.847159 + 0.531340i \(0.821689\pi\)
\(380\) 0 0
\(381\) −2.06913 −0.106005
\(382\) 0 0
\(383\) 14.9309 0.762932 0.381466 0.924383i \(-0.375419\pi\)
0.381466 + 0.924383i \(0.375419\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −36.4924 −1.85501
\(388\) 0 0
\(389\) −27.1231 −1.37520 −0.687598 0.726092i \(-0.741335\pi\)
−0.687598 + 0.726092i \(0.741335\pi\)
\(390\) 0 0
\(391\) 5.56155 0.281260
\(392\) 0 0
\(393\) 25.4384 1.28320
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −24.1771 −1.21341 −0.606706 0.794926i \(-0.707510\pi\)
−0.606706 + 0.794926i \(0.707510\pi\)
\(398\) 0 0
\(399\) −8.00000 −0.400501
\(400\) 0 0
\(401\) 16.7386 0.835887 0.417944 0.908473i \(-0.362751\pi\)
0.417944 + 0.908473i \(0.362751\pi\)
\(402\) 0 0
\(403\) −4.56155 −0.227227
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.12311 0.353079
\(408\) 0 0
\(409\) 5.00000 0.247234 0.123617 0.992330i \(-0.460551\pi\)
0.123617 + 0.992330i \(0.460551\pi\)
\(410\) 0 0
\(411\) −50.2462 −2.47846
\(412\) 0 0
\(413\) 8.68466 0.427344
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 36.8078 1.80248
\(418\) 0 0
\(419\) −19.6155 −0.958281 −0.479141 0.877738i \(-0.659052\pi\)
−0.479141 + 0.877738i \(0.659052\pi\)
\(420\) 0 0
\(421\) −39.1231 −1.90674 −0.953372 0.301798i \(-0.902413\pi\)
−0.953372 + 0.301798i \(0.902413\pi\)
\(422\) 0 0
\(423\) 13.1231 0.638067
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −14.2462 −0.689422
\(428\) 0 0
\(429\) 2.87689 0.138898
\(430\) 0 0
\(431\) −13.7538 −0.662497 −0.331248 0.943544i \(-0.607470\pi\)
−0.331248 + 0.943544i \(0.607470\pi\)
\(432\) 0 0
\(433\) 1.31534 0.0632113 0.0316056 0.999500i \(-0.489938\pi\)
0.0316056 + 0.999500i \(0.489938\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.00000 −0.0956730
\(438\) 0 0
\(439\) −16.8078 −0.802191 −0.401095 0.916036i \(-0.631370\pi\)
−0.401095 + 0.916036i \(0.631370\pi\)
\(440\) 0 0
\(441\) −16.2462 −0.773629
\(442\) 0 0
\(443\) −15.0540 −0.715236 −0.357618 0.933868i \(-0.616411\pi\)
−0.357618 + 0.933868i \(0.616411\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −23.3693 −1.10533
\(448\) 0 0
\(449\) 30.6847 1.44810 0.724049 0.689748i \(-0.242279\pi\)
0.724049 + 0.689748i \(0.242279\pi\)
\(450\) 0 0
\(451\) −8.24621 −0.388299
\(452\) 0 0
\(453\) −6.56155 −0.308289
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −10.9309 −0.511325 −0.255662 0.966766i \(-0.582294\pi\)
−0.255662 + 0.966766i \(0.582294\pi\)
\(458\) 0 0
\(459\) 8.00000 0.373408
\(460\) 0 0
\(461\) 6.17708 0.287695 0.143848 0.989600i \(-0.454052\pi\)
0.143848 + 0.989600i \(0.454052\pi\)
\(462\) 0 0
\(463\) −20.8769 −0.970232 −0.485116 0.874450i \(-0.661223\pi\)
−0.485116 + 0.874450i \(0.661223\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.68466 0.124231 0.0621156 0.998069i \(-0.480215\pi\)
0.0621156 + 0.998069i \(0.480215\pi\)
\(468\) 0 0
\(469\) −18.0540 −0.833655
\(470\) 0 0
\(471\) −8.49242 −0.391310
\(472\) 0 0
\(473\) −20.4924 −0.942243
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −15.8078 −0.723788
\(478\) 0 0
\(479\) 4.00000 0.182765 0.0913823 0.995816i \(-0.470871\pi\)
0.0913823 + 0.995816i \(0.470871\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) 4.00000 0.182006
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −11.6847 −0.529482 −0.264741 0.964319i \(-0.585287\pi\)
−0.264741 + 0.964319i \(0.585287\pi\)
\(488\) 0 0
\(489\) −14.5616 −0.658496
\(490\) 0 0
\(491\) −28.6155 −1.29140 −0.645700 0.763591i \(-0.723434\pi\)
−0.645700 + 0.763591i \(0.723434\pi\)
\(492\) 0 0
\(493\) −0.684658 −0.0308355
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.80776 0.350226
\(498\) 0 0
\(499\) −9.73863 −0.435961 −0.217981 0.975953i \(-0.569947\pi\)
−0.217981 + 0.975953i \(0.569947\pi\)
\(500\) 0 0
\(501\) −20.4924 −0.915534
\(502\) 0 0
\(503\) 19.5616 0.872207 0.436103 0.899897i \(-0.356358\pi\)
0.436103 + 0.899897i \(0.356358\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 32.4924 1.44304
\(508\) 0 0
\(509\) −28.5616 −1.26597 −0.632984 0.774165i \(-0.718170\pi\)
−0.632984 + 0.774165i \(0.718170\pi\)
\(510\) 0 0
\(511\) −5.36932 −0.237525
\(512\) 0 0
\(513\) −2.87689 −0.127018
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 7.36932 0.324102
\(518\) 0 0
\(519\) 2.87689 0.126282
\(520\) 0 0
\(521\) −33.8617 −1.48351 −0.741755 0.670671i \(-0.766006\pi\)
−0.741755 + 0.670671i \(0.766006\pi\)
\(522\) 0 0
\(523\) −6.24621 −0.273128 −0.136564 0.990631i \(-0.543606\pi\)
−0.136564 + 0.990631i \(0.543606\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −45.1771 −1.96794
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 19.8078 0.859584
\(532\) 0 0
\(533\) 2.31534 0.100289
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −50.4233 −2.17593
\(538\) 0 0
\(539\) −9.12311 −0.392960
\(540\) 0 0
\(541\) −21.0540 −0.905181 −0.452591 0.891718i \(-0.649500\pi\)
−0.452591 + 0.891718i \(0.649500\pi\)
\(542\) 0 0
\(543\) 43.8617 1.88229
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −19.6847 −0.841655 −0.420828 0.907141i \(-0.638260\pi\)
−0.420828 + 0.907141i \(0.638260\pi\)
\(548\) 0 0
\(549\) −32.4924 −1.38674
\(550\) 0 0
\(551\) 0.246211 0.0104890
\(552\) 0 0
\(553\) 14.2462 0.605811
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −32.3002 −1.36860 −0.684301 0.729199i \(-0.739893\pi\)
−0.684301 + 0.729199i \(0.739893\pi\)
\(558\) 0 0
\(559\) 5.75379 0.243359
\(560\) 0 0
\(561\) 28.4924 1.20295
\(562\) 0 0
\(563\) −31.8078 −1.34054 −0.670269 0.742118i \(-0.733821\pi\)
−0.670269 + 0.742118i \(0.733821\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −10.9309 −0.459053
\(568\) 0 0
\(569\) −4.73863 −0.198654 −0.0993269 0.995055i \(-0.531669\pi\)
−0.0993269 + 0.995055i \(0.531669\pi\)
\(570\) 0 0
\(571\) −18.7386 −0.784187 −0.392094 0.919925i \(-0.628249\pi\)
−0.392094 + 0.919925i \(0.628249\pi\)
\(572\) 0 0
\(573\) 13.1231 0.548226
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 19.6847 0.819483 0.409742 0.912202i \(-0.365619\pi\)
0.409742 + 0.912202i \(0.365619\pi\)
\(578\) 0 0
\(579\) −25.4384 −1.05719
\(580\) 0 0
\(581\) −7.31534 −0.303492
\(582\) 0 0
\(583\) −8.87689 −0.367643
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 43.3002 1.78719 0.893595 0.448874i \(-0.148175\pi\)
0.893595 + 0.448874i \(0.148175\pi\)
\(588\) 0 0
\(589\) 16.2462 0.669413
\(590\) 0 0
\(591\) −7.19224 −0.295849
\(592\) 0 0
\(593\) −48.3542 −1.98567 −0.992834 0.119504i \(-0.961870\pi\)
−0.992834 + 0.119504i \(0.961870\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 46.1080 1.88707
\(598\) 0 0
\(599\) 16.0000 0.653742 0.326871 0.945069i \(-0.394006\pi\)
0.326871 + 0.945069i \(0.394006\pi\)
\(600\) 0 0
\(601\) −40.8617 −1.66679 −0.833393 0.552682i \(-0.813605\pi\)
−0.833393 + 0.552682i \(0.813605\pi\)
\(602\) 0 0
\(603\) −41.1771 −1.67686
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 36.0000 1.46119 0.730597 0.682808i \(-0.239242\pi\)
0.730597 + 0.682808i \(0.239242\pi\)
\(608\) 0 0
\(609\) −0.492423 −0.0199540
\(610\) 0 0
\(611\) −2.06913 −0.0837081
\(612\) 0 0
\(613\) −31.6155 −1.27694 −0.638470 0.769647i \(-0.720432\pi\)
−0.638470 + 0.769647i \(0.720432\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −46.3002 −1.86398 −0.931988 0.362490i \(-0.881927\pi\)
−0.931988 + 0.362490i \(0.881927\pi\)
\(618\) 0 0
\(619\) −11.5076 −0.462529 −0.231264 0.972891i \(-0.574286\pi\)
−0.231264 + 0.972891i \(0.574286\pi\)
\(620\) 0 0
\(621\) 1.43845 0.0577229
\(622\) 0 0
\(623\) 12.4924 0.500498
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −10.2462 −0.409194
\(628\) 0 0
\(629\) −19.8078 −0.789787
\(630\) 0 0
\(631\) 34.7386 1.38292 0.691462 0.722413i \(-0.256967\pi\)
0.691462 + 0.722413i \(0.256967\pi\)
\(632\) 0 0
\(633\) 48.4924 1.92740
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 2.56155 0.101492
\(638\) 0 0
\(639\) 17.8078 0.704464
\(640\) 0 0
\(641\) 11.1231 0.439336 0.219668 0.975575i \(-0.429503\pi\)
0.219668 + 0.975575i \(0.429503\pi\)
\(642\) 0 0
\(643\) 23.1771 0.914015 0.457007 0.889463i \(-0.348921\pi\)
0.457007 + 0.889463i \(0.348921\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −34.1771 −1.34364 −0.671820 0.740715i \(-0.734487\pi\)
−0.671820 + 0.740715i \(0.734487\pi\)
\(648\) 0 0
\(649\) 11.1231 0.436620
\(650\) 0 0
\(651\) −32.4924 −1.27348
\(652\) 0 0
\(653\) 32.4233 1.26882 0.634411 0.772996i \(-0.281243\pi\)
0.634411 + 0.772996i \(0.281243\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −12.2462 −0.477770
\(658\) 0 0
\(659\) −11.6155 −0.452477 −0.226238 0.974072i \(-0.572643\pi\)
−0.226238 + 0.974072i \(0.572643\pi\)
\(660\) 0 0
\(661\) 44.2462 1.72098 0.860489 0.509469i \(-0.170158\pi\)
0.860489 + 0.509469i \(0.170158\pi\)
\(662\) 0 0
\(663\) −8.00000 −0.310694
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −0.123106 −0.00476667
\(668\) 0 0
\(669\) −69.4773 −2.68615
\(670\) 0 0
\(671\) −18.2462 −0.704387
\(672\) 0 0
\(673\) 36.8078 1.41884 0.709418 0.704788i \(-0.248958\pi\)
0.709418 + 0.704788i \(0.248958\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.68466 0.256912 0.128456 0.991715i \(-0.458998\pi\)
0.128456 + 0.991715i \(0.458998\pi\)
\(678\) 0 0
\(679\) 4.87689 0.187158
\(680\) 0 0
\(681\) −4.49242 −0.172150
\(682\) 0 0
\(683\) −21.9309 −0.839161 −0.419581 0.907718i \(-0.637823\pi\)
−0.419581 + 0.907718i \(0.637823\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 56.9848 2.17411
\(688\) 0 0
\(689\) 2.49242 0.0949537
\(690\) 0 0
\(691\) −32.4924 −1.23607 −0.618035 0.786151i \(-0.712071\pi\)
−0.618035 + 0.786151i \(0.712071\pi\)
\(692\) 0 0
\(693\) 11.1231 0.422532
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 22.9309 0.868569
\(698\) 0 0
\(699\) −64.8078 −2.45125
\(700\) 0 0
\(701\) 26.2462 0.991306 0.495653 0.868521i \(-0.334929\pi\)
0.495653 + 0.868521i \(0.334929\pi\)
\(702\) 0 0
\(703\) 7.12311 0.268653
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15.3153 −0.575993
\(708\) 0 0
\(709\) −16.0000 −0.600893 −0.300446 0.953799i \(-0.597136\pi\)
−0.300446 + 0.953799i \(0.597136\pi\)
\(710\) 0 0
\(711\) 32.4924 1.21856
\(712\) 0 0
\(713\) −8.12311 −0.304213
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −41.3002 −1.54238
\(718\) 0 0
\(719\) −8.68466 −0.323883 −0.161942 0.986800i \(-0.551776\pi\)
−0.161942 + 0.986800i \(0.551776\pi\)
\(720\) 0 0
\(721\) 3.50758 0.130629
\(722\) 0 0
\(723\) −37.1231 −1.38062
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 15.5616 0.577146 0.288573 0.957458i \(-0.406819\pi\)
0.288573 + 0.957458i \(0.406819\pi\)
\(728\) 0 0
\(729\) −35.9848 −1.33277
\(730\) 0 0
\(731\) 56.9848 2.10766
\(732\) 0 0
\(733\) 5.17708 0.191220 0.0956099 0.995419i \(-0.469520\pi\)
0.0956099 + 0.995419i \(0.469520\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −23.1231 −0.851751
\(738\) 0 0
\(739\) 31.4924 1.15847 0.579234 0.815161i \(-0.303352\pi\)
0.579234 + 0.815161i \(0.303352\pi\)
\(740\) 0 0
\(741\) 2.87689 0.105685
\(742\) 0 0
\(743\) −29.7538 −1.09156 −0.545780 0.837928i \(-0.683767\pi\)
−0.545780 + 0.837928i \(0.683767\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −16.6847 −0.610460
\(748\) 0 0
\(749\) 16.6847 0.609644
\(750\) 0 0
\(751\) 46.3542 1.69149 0.845744 0.533589i \(-0.179157\pi\)
0.845744 + 0.533589i \(0.179157\pi\)
\(752\) 0 0
\(753\) 2.24621 0.0818565
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −44.5464 −1.61907 −0.809533 0.587074i \(-0.800280\pi\)
−0.809533 + 0.587074i \(0.800280\pi\)
\(758\) 0 0
\(759\) 5.12311 0.185957
\(760\) 0 0
\(761\) −43.9848 −1.59445 −0.797225 0.603683i \(-0.793699\pi\)
−0.797225 + 0.603683i \(0.793699\pi\)
\(762\) 0 0
\(763\) 11.1231 0.402683
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.12311 −0.112769
\(768\) 0 0
\(769\) 33.6155 1.21221 0.606103 0.795386i \(-0.292732\pi\)
0.606103 + 0.795386i \(0.292732\pi\)
\(770\) 0 0
\(771\) 29.9309 1.07793
\(772\) 0 0
\(773\) 20.8769 0.750890 0.375445 0.926845i \(-0.377490\pi\)
0.375445 + 0.926845i \(0.377490\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −14.2462 −0.511080
\(778\) 0 0
\(779\) −8.24621 −0.295451
\(780\) 0 0
\(781\) 10.0000 0.357828
\(782\) 0 0
\(783\) −0.177081 −0.00632836
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 20.3002 0.723624 0.361812 0.932251i \(-0.382158\pi\)
0.361812 + 0.932251i \(0.382158\pi\)
\(788\) 0 0
\(789\) 68.3542 2.43347
\(790\) 0 0
\(791\) −14.9309 −0.530881
\(792\) 0 0
\(793\) 5.12311 0.181927
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −45.8078 −1.62259 −0.811297 0.584634i \(-0.801238\pi\)
−0.811297 + 0.584634i \(0.801238\pi\)
\(798\) 0 0
\(799\) −20.4924 −0.724970
\(800\) 0 0
\(801\) 28.4924 1.00673
\(802\) 0 0
\(803\) −6.87689 −0.242680
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −14.0691 −0.495257
\(808\) 0 0
\(809\) 30.1922 1.06150 0.530751 0.847528i \(-0.321910\pi\)
0.530751 + 0.847528i \(0.321910\pi\)
\(810\) 0 0
\(811\) 10.3693 0.364116 0.182058 0.983288i \(-0.441724\pi\)
0.182058 + 0.983288i \(0.441724\pi\)
\(812\) 0 0
\(813\) −54.2462 −1.90250
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −20.4924 −0.716939
\(818\) 0 0
\(819\) −3.12311 −0.109130
\(820\) 0 0
\(821\) 5.50758 0.192216 0.0961079 0.995371i \(-0.469361\pi\)
0.0961079 + 0.995371i \(0.469361\pi\)
\(822\) 0 0
\(823\) 12.1771 0.424466 0.212233 0.977219i \(-0.431926\pi\)
0.212233 + 0.977219i \(0.431926\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 40.6847 1.41474 0.707372 0.706841i \(-0.249881\pi\)
0.707372 + 0.706841i \(0.249881\pi\)
\(828\) 0 0
\(829\) −16.4384 −0.570931 −0.285465 0.958389i \(-0.592148\pi\)
−0.285465 + 0.958389i \(0.592148\pi\)
\(830\) 0 0
\(831\) −62.9157 −2.18252
\(832\) 0 0
\(833\) 25.3693 0.878995
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −11.6847 −0.403881
\(838\) 0 0
\(839\) −7.61553 −0.262917 −0.131459 0.991322i \(-0.541966\pi\)
−0.131459 + 0.991322i \(0.541966\pi\)
\(840\) 0 0
\(841\) −28.9848 −0.999477
\(842\) 0 0
\(843\) 2.24621 0.0773636
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −10.9309 −0.375589
\(848\) 0 0
\(849\) 63.8617 2.19173
\(850\) 0 0
\(851\) −3.56155 −0.122088
\(852\) 0 0
\(853\) −18.4924 −0.633168 −0.316584 0.948564i \(-0.602536\pi\)
−0.316584 + 0.948564i \(0.602536\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −29.5464 −1.00929 −0.504643 0.863328i \(-0.668376\pi\)
−0.504643 + 0.863328i \(0.668376\pi\)
\(858\) 0 0
\(859\) −24.3693 −0.831470 −0.415735 0.909486i \(-0.636476\pi\)
−0.415735 + 0.909486i \(0.636476\pi\)
\(860\) 0 0
\(861\) 16.4924 0.562060
\(862\) 0 0
\(863\) 21.6847 0.738154 0.369077 0.929399i \(-0.379674\pi\)
0.369077 + 0.929399i \(0.379674\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −35.6847 −1.21191
\(868\) 0 0
\(869\) 18.2462 0.618960
\(870\) 0 0
\(871\) 6.49242 0.219987
\(872\) 0 0
\(873\) 11.1231 0.376460
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −51.4773 −1.73826 −0.869132 0.494580i \(-0.835322\pi\)
−0.869132 + 0.494580i \(0.835322\pi\)
\(878\) 0 0
\(879\) 26.7386 0.901872
\(880\) 0 0
\(881\) −26.7386 −0.900847 −0.450424 0.892815i \(-0.648727\pi\)
−0.450424 + 0.892815i \(0.648727\pi\)
\(882\) 0 0
\(883\) −20.9848 −0.706196 −0.353098 0.935586i \(-0.614872\pi\)
−0.353098 + 0.935586i \(0.614872\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.17708 −0.0730992 −0.0365496 0.999332i \(-0.511637\pi\)
−0.0365496 + 0.999332i \(0.511637\pi\)
\(888\) 0 0
\(889\) 1.26137 0.0423049
\(890\) 0 0
\(891\) −14.0000 −0.469018
\(892\) 0 0
\(893\) 7.36932 0.246605
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −1.43845 −0.0480284
\(898\) 0 0
\(899\) 1.00000 0.0333519
\(900\) 0 0
\(901\) 24.6847 0.822365
\(902\) 0 0
\(903\) 40.9848 1.36389
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 37.4233 1.24262 0.621310 0.783565i \(-0.286601\pi\)
0.621310 + 0.783565i \(0.286601\pi\)
\(908\) 0 0
\(909\) −34.9309 −1.15858
\(910\) 0 0
\(911\) −14.8769 −0.492894 −0.246447 0.969156i \(-0.579263\pi\)
−0.246447 + 0.969156i \(0.579263\pi\)
\(912\) 0 0
\(913\) −9.36932 −0.310079
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15.5076 −0.512105
\(918\) 0 0
\(919\) −12.4924 −0.412087 −0.206043 0.978543i \(-0.566059\pi\)
−0.206043 + 0.978543i \(0.566059\pi\)
\(920\) 0 0
\(921\) −24.0000 −0.790827
\(922\) 0 0
\(923\) −2.80776 −0.0924187
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 8.00000 0.262754
\(928\) 0 0
\(929\) 49.7386 1.63187 0.815936 0.578142i \(-0.196222\pi\)
0.815936 + 0.578142i \(0.196222\pi\)
\(930\) 0 0
\(931\) −9.12311 −0.298998
\(932\) 0 0
\(933\) −63.5464 −2.08042
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −26.0000 −0.849383 −0.424691 0.905338i \(-0.639617\pi\)
−0.424691 + 0.905338i \(0.639617\pi\)
\(938\) 0 0
\(939\) 38.2462 1.24812
\(940\) 0 0
\(941\) −0.492423 −0.0160525 −0.00802626 0.999968i \(-0.502555\pi\)
−0.00802626 + 0.999968i \(0.502555\pi\)
\(942\) 0 0
\(943\) 4.12311 0.134267
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13.4384 0.436691 0.218345 0.975872i \(-0.429934\pi\)
0.218345 + 0.975872i \(0.429934\pi\)
\(948\) 0 0
\(949\) 1.93087 0.0626787
\(950\) 0 0
\(951\) 1.61553 0.0523871
\(952\) 0 0
\(953\) 27.7538 0.899033 0.449517 0.893272i \(-0.351596\pi\)
0.449517 + 0.893272i \(0.351596\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −0.630683 −0.0203871
\(958\) 0 0
\(959\) 30.6307 0.989116
\(960\) 0 0
\(961\) 34.9848 1.12854
\(962\) 0 0
\(963\) 38.0540 1.22627
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −36.1771 −1.16338 −0.581688 0.813412i \(-0.697608\pi\)
−0.581688 + 0.813412i \(0.697608\pi\)
\(968\) 0 0
\(969\) 28.4924 0.915308
\(970\) 0 0
\(971\) −34.1080 −1.09458 −0.547288 0.836944i \(-0.684340\pi\)
−0.547288 + 0.836944i \(0.684340\pi\)
\(972\) 0 0
\(973\) −22.4384 −0.719344
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −41.3153 −1.32179 −0.660897 0.750476i \(-0.729824\pi\)
−0.660897 + 0.750476i \(0.729824\pi\)
\(978\) 0 0
\(979\) 16.0000 0.511362
\(980\) 0 0
\(981\) 25.3693 0.809980
\(982\) 0 0
\(983\) −41.0388 −1.30894 −0.654468 0.756090i \(-0.727107\pi\)
−0.654468 + 0.756090i \(0.727107\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −14.7386 −0.469136
\(988\) 0 0
\(989\) 10.2462 0.325811
\(990\) 0 0
\(991\) −18.4384 −0.585717 −0.292858 0.956156i \(-0.594606\pi\)
−0.292858 + 0.956156i \(0.594606\pi\)
\(992\) 0 0
\(993\) 75.5464 2.39739
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 46.1080 1.46025 0.730127 0.683312i \(-0.239461\pi\)
0.730127 + 0.683312i \(0.239461\pi\)
\(998\) 0 0
\(999\) −5.12311 −0.162088
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9200.2.a.bq.1.1 2
4.3 odd 2 4600.2.a.t.1.2 2
5.4 even 2 1840.2.a.o.1.2 2
20.3 even 4 4600.2.e.n.4049.4 4
20.7 even 4 4600.2.e.n.4049.1 4
20.19 odd 2 920.2.a.e.1.1 2
40.19 odd 2 7360.2.a.bp.1.2 2
40.29 even 2 7360.2.a.bl.1.1 2
60.59 even 2 8280.2.a.bf.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.a.e.1.1 2 20.19 odd 2
1840.2.a.o.1.2 2 5.4 even 2
4600.2.a.t.1.2 2 4.3 odd 2
4600.2.e.n.4049.1 4 20.7 even 4
4600.2.e.n.4049.4 4 20.3 even 4
7360.2.a.bl.1.1 2 40.29 even 2
7360.2.a.bp.1.2 2 40.19 odd 2
8280.2.a.bf.1.2 2 60.59 even 2
9200.2.a.bq.1.1 2 1.1 even 1 trivial