Properties

Label 2-96e2-1.1-c1-0-78
Degree $2$
Conductor $9216$
Sign $1$
Analytic cond. $73.5901$
Root an. cond. $8.57846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41·5-s + 4·7-s + 5.65·11-s − 4.24·13-s + 6·17-s + 5.65·19-s − 8·23-s − 2.99·25-s − 4.24·29-s + 4·31-s + 5.65·35-s − 1.41·37-s + 2·41-s − 5.65·43-s + 8·47-s + 9·49-s + 9.89·53-s + 8.00·55-s − 4.24·61-s − 6·65-s + 11.3·67-s + 10·73-s + 22.6·77-s + 12·79-s + 5.65·83-s + 8.48·85-s − 16·89-s + ⋯
L(s)  = 1  + 0.632·5-s + 1.51·7-s + 1.70·11-s − 1.17·13-s + 1.45·17-s + 1.29·19-s − 1.66·23-s − 0.599·25-s − 0.787·29-s + 0.718·31-s + 0.956·35-s − 0.232·37-s + 0.312·41-s − 0.862·43-s + 1.16·47-s + 1.28·49-s + 1.35·53-s + 1.07·55-s − 0.543·61-s − 0.744·65-s + 1.38·67-s + 1.17·73-s + 2.57·77-s + 1.35·79-s + 0.620·83-s + 0.920·85-s − 1.69·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9216 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9216\)    =    \(2^{10} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(73.5901\)
Root analytic conductor: \(8.57846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9216,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.491933416\)
\(L(\frac12)\) \(\approx\) \(3.491933416\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 1.41T + 5T^{2} \)
7 \( 1 - 4T + 7T^{2} \)
11 \( 1 - 5.65T + 11T^{2} \)
13 \( 1 + 4.24T + 13T^{2} \)
17 \( 1 - 6T + 17T^{2} \)
19 \( 1 - 5.65T + 19T^{2} \)
23 \( 1 + 8T + 23T^{2} \)
29 \( 1 + 4.24T + 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + 1.41T + 37T^{2} \)
41 \( 1 - 2T + 41T^{2} \)
43 \( 1 + 5.65T + 43T^{2} \)
47 \( 1 - 8T + 47T^{2} \)
53 \( 1 - 9.89T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 4.24T + 61T^{2} \)
67 \( 1 - 11.3T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 10T + 73T^{2} \)
79 \( 1 - 12T + 79T^{2} \)
83 \( 1 - 5.65T + 83T^{2} \)
89 \( 1 + 16T + 89T^{2} \)
97 \( 1 - 8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.73536282952643018202134004908, −7.17896038249826618637825140691, −6.27475982917468646684113643983, −5.51064588113498983081165322552, −5.14928741387013799069560225998, −4.16596500324326316740245778538, −3.62793282621066475013107164267, −2.37921804647973866560352906238, −1.69213857367136046510671702177, −0.988736452349166151317044692196, 0.988736452349166151317044692196, 1.69213857367136046510671702177, 2.37921804647973866560352906238, 3.62793282621066475013107164267, 4.16596500324326316740245778538, 5.14928741387013799069560225998, 5.51064588113498983081165322552, 6.27475982917468646684113643983, 7.17896038249826618637825140691, 7.73536282952643018202134004908

Graph of the $Z$-function along the critical line