L(s) = 1 | − 2-s + (0.5 − 0.866i)3-s + 4-s + (0.5 + 0.866i)5-s + (−0.5 + 0.866i)6-s + (1.5 − 2.59i)7-s − 8-s + (−0.499 − 0.866i)9-s + (−0.5 − 0.866i)10-s + (1.5 + 2.59i)11-s + (0.5 − 0.866i)12-s + (−2 − 3.46i)13-s + (−1.5 + 2.59i)14-s + 0.999·15-s + 16-s + (2 − 3.46i)17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (0.288 − 0.499i)3-s + 0.5·4-s + (0.223 + 0.387i)5-s + (−0.204 + 0.353i)6-s + (0.566 − 0.981i)7-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.158 − 0.273i)10-s + (0.452 + 0.783i)11-s + (0.144 − 0.249i)12-s + (−0.554 − 0.960i)13-s + (−0.400 + 0.694i)14-s + 0.258·15-s + 0.250·16-s + (0.485 − 0.840i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.275 + 0.961i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 930 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.275 + 0.961i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.06765 - 0.805039i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.06765 - 0.805039i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 + (3.5 + 4.33i)T \) |
good | 7 | \( 1 + (-1.5 + 2.59i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2 + 3.46i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2 + 3.46i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 2T + 23T^{2} \) |
| 29 | \( 1 - T + 29T^{2} \) |
| 37 | \( 1 + (-3 + 5.19i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1 - 1.73i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2 - 3.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 4T + 47T^{2} \) |
| 53 | \( 1 + (-1.5 - 2.59i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.5 + 7.79i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + 2T + 61T^{2} \) |
| 67 | \( 1 + (1 + 1.73i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2 + 3.46i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (1 + 1.73i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2 + 3.46i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (4.5 + 7.79i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 10T + 89T^{2} \) |
| 97 | \( 1 - 11T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.830290058217555949582316951872, −9.187294919342815267317648382655, −7.949518320989708776429499444316, −7.47204458621880329207051667070, −6.89837681649799638410317250595, −5.72655549257289422337288064574, −4.53356909219669297757417948322, −3.22078953128042079407789685374, −2.09682530844649868937651155686, −0.824254013008525873639844661898,
1.49264767003436741142285984151, 2.60373812176604309632083487874, 3.88979642042421673933644973386, 5.08904831039211667915392591074, 5.87566347793163294273825009038, 6.92710271944468010358143007498, 8.106166451005508725014107280902, 8.742711826524714251020359689481, 9.187963647352689207280972916550, 10.07798911326150405737174883869