L(s) = 1 | − 2-s + (0.5 − 0.866i)3-s + 4-s + (0.5 + 0.866i)5-s + (−0.5 + 0.866i)6-s + (1.5 − 2.59i)7-s − 8-s + (−0.499 − 0.866i)9-s + (−0.5 − 0.866i)10-s + (1.5 + 2.59i)11-s + (0.5 − 0.866i)12-s + (−2 − 3.46i)13-s + (−1.5 + 2.59i)14-s + 0.999·15-s + 16-s + (2 − 3.46i)17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (0.288 − 0.499i)3-s + 0.5·4-s + (0.223 + 0.387i)5-s + (−0.204 + 0.353i)6-s + (0.566 − 0.981i)7-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.158 − 0.273i)10-s + (0.452 + 0.783i)11-s + (0.144 − 0.249i)12-s + (−0.554 − 0.960i)13-s + (−0.400 + 0.694i)14-s + 0.258·15-s + 0.250·16-s + (0.485 − 0.840i)17-s + ⋯ |
Λ(s)=(=(930s/2ΓC(s)L(s)(0.275+0.961i)Λ(2−s)
Λ(s)=(=(930s/2ΓC(s+1/2)L(s)(0.275+0.961i)Λ(1−s)
Degree: |
2 |
Conductor: |
930
= 2⋅3⋅5⋅31
|
Sign: |
0.275+0.961i
|
Analytic conductor: |
7.42608 |
Root analytic conductor: |
2.72508 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ930(811,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 930, ( :1/2), 0.275+0.961i)
|
Particular Values
L(1) |
≈ |
1.06765−0.805039i |
L(21) |
≈ |
1.06765−0.805039i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1+(−0.5+0.866i)T |
| 5 | 1+(−0.5−0.866i)T |
| 31 | 1+(3.5+4.33i)T |
good | 7 | 1+(−1.5+2.59i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−1.5−2.59i)T+(−5.5+9.52i)T2 |
| 13 | 1+(2+3.46i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−2+3.46i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−9.5−16.4i)T2 |
| 23 | 1−2T+23T2 |
| 29 | 1−T+29T2 |
| 37 | 1+(−3+5.19i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−1−1.73i)T+(−20.5+35.5i)T2 |
| 43 | 1+(2−3.46i)T+(−21.5−37.2i)T2 |
| 47 | 1−4T+47T2 |
| 53 | 1+(−1.5−2.59i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−4.5+7.79i)T+(−29.5−51.0i)T2 |
| 61 | 1+2T+61T2 |
| 67 | 1+(1+1.73i)T+(−33.5+58.0i)T2 |
| 71 | 1+(2+3.46i)T+(−35.5+61.4i)T2 |
| 73 | 1+(1+1.73i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−2+3.46i)T+(−39.5−68.4i)T2 |
| 83 | 1+(4.5+7.79i)T+(−41.5+71.8i)T2 |
| 89 | 1−10T+89T2 |
| 97 | 1−11T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.830290058217555949582316951872, −9.187294919342815267317648382655, −7.949518320989708776429499444316, −7.47204458621880329207051667070, −6.89837681649799638410317250595, −5.72655549257289422337288064574, −4.53356909219669297757417948322, −3.22078953128042079407789685374, −2.09682530844649868937651155686, −0.824254013008525873639844661898,
1.49264767003436741142285984151, 2.60373812176604309632083487874, 3.88979642042421673933644973386, 5.08904831039211667915392591074, 5.87566347793163294273825009038, 6.92710271944468010358143007498, 8.106166451005508725014107280902, 8.742711826524714251020359689481, 9.187963647352689207280972916550, 10.07798911326150405737174883869