Properties

Label 930.2.i.c
Level 930930
Weight 22
Character orbit 930.i
Analytic conductor 7.4267.426
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [930,2,Mod(211,930)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(930, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("930.211");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 930=23531 930 = 2 \cdot 3 \cdot 5 \cdot 31
Weight: k k == 2 2
Character orbit: [χ][\chi] == 930.i (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.426087387987.42608738798
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq2+(ζ6+1)q3+q4+ζ6q5+(ζ61)q6+(3ζ6+3)q7q8ζ6q9ζ6q10+3ζ6q11+(ζ6+1)q12++(3ζ6+3)q99+O(q100) q - q^{2} + ( - \zeta_{6} + 1) q^{3} + q^{4} + \zeta_{6} q^{5} + (\zeta_{6} - 1) q^{6} + ( - 3 \zeta_{6} + 3) q^{7} - q^{8} - \zeta_{6} q^{9} - \zeta_{6} q^{10} + 3 \zeta_{6} q^{11} + ( - \zeta_{6} + 1) q^{12} + \cdots + ( - 3 \zeta_{6} + 3) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q2+q3+2q4+q5q6+3q72q8q9q10+3q11+q124q133q14+2q15+2q16+4q17+q18+q203q213q22++3q99+O(q100) 2 q - 2 q^{2} + q^{3} + 2 q^{4} + q^{5} - q^{6} + 3 q^{7} - 2 q^{8} - q^{9} - q^{10} + 3 q^{11} + q^{12} - 4 q^{13} - 3 q^{14} + 2 q^{15} + 2 q^{16} + 4 q^{17} + q^{18} + q^{20} - 3 q^{21} - 3 q^{22}+ \cdots + 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/930Z)×\left(\mathbb{Z}/930\mathbb{Z}\right)^\times.

nn 187187 311311 871871
χ(n)\chi(n) 11 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
211.1
0.500000 0.866025i
0.500000 + 0.866025i
−1.00000 0.500000 + 0.866025i 1.00000 0.500000 0.866025i −0.500000 0.866025i 1.50000 + 2.59808i −1.00000 −0.500000 + 0.866025i −0.500000 + 0.866025i
811.1 −1.00000 0.500000 0.866025i 1.00000 0.500000 + 0.866025i −0.500000 + 0.866025i 1.50000 2.59808i −1.00000 −0.500000 0.866025i −0.500000 0.866025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 930.2.i.c 2
31.c even 3 1 inner 930.2.i.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
930.2.i.c 2 1.a even 1 1 trivial
930.2.i.c 2 31.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(930,[χ])S_{2}^{\mathrm{new}}(930, [\chi]):

T723T7+9 T_{7}^{2} - 3T_{7} + 9 Copy content Toggle raw display
T1123T11+9 T_{11}^{2} - 3T_{11} + 9 Copy content Toggle raw display
T132+4T13+16 T_{13}^{2} + 4T_{13} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
33 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
55 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
77 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
1111 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
1313 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
1717 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 (T2)2 (T - 2)^{2} Copy content Toggle raw display
2929 (T1)2 (T - 1)^{2} Copy content Toggle raw display
3131 T2+7T+31 T^{2} + 7T + 31 Copy content Toggle raw display
3737 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
4141 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
4343 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
4747 (T4)2 (T - 4)^{2} Copy content Toggle raw display
5353 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
5959 T29T+81 T^{2} - 9T + 81 Copy content Toggle raw display
6161 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
6767 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
7171 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
7373 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
7979 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
8383 T2+9T+81 T^{2} + 9T + 81 Copy content Toggle raw display
8989 (T10)2 (T - 10)^{2} Copy content Toggle raw display
9797 (T11)2 (T - 11)^{2} Copy content Toggle raw display
show more
show less