L(s) = 1 | + (−0.221 − 1.39i)2-s + (−1.90 + 0.618i)4-s − 2.52i·5-s + 2.79·7-s + (1.28 + 2.52i)8-s + (−3.52 + 0.557i)10-s − 5.31i·11-s − i·13-s + (−0.618 − 3.90i)14-s + (3.23 − 2.35i)16-s + 4.35·17-s + 6.02i·19-s + (1.55 + 4.79i)20-s + (−7.42 + 1.17i)22-s − 0.568·23-s + ⋯ |
L(s) = 1 | + (−0.156 − 0.987i)2-s + (−0.951 + 0.309i)4-s − 1.12i·5-s + 1.05·7-s + (0.453 + 0.891i)8-s + (−1.11 + 0.176i)10-s − 1.60i·11-s − 0.277i·13-s + (−0.165 − 1.04i)14-s + (0.809 − 0.587i)16-s + 1.05·17-s + 1.38i·19-s + (0.348 + 1.07i)20-s + (−1.58 + 0.250i)22-s − 0.118·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.891 + 0.453i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.891 + 0.453i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.328500 - 1.36830i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.328500 - 1.36830i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.221 + 1.39i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 + 2.52iT - 5T^{2} \) |
| 7 | \( 1 - 2.79T + 7T^{2} \) |
| 11 | \( 1 + 5.31iT - 11T^{2} \) |
| 17 | \( 1 - 4.35T + 17T^{2} \) |
| 19 | \( 1 - 6.02iT - 19T^{2} \) |
| 23 | \( 1 + 0.568T + 23T^{2} \) |
| 29 | \( 1 + 2.68iT - 29T^{2} \) |
| 31 | \( 1 - 1.90T + 31T^{2} \) |
| 37 | \( 1 + 9.60iT - 37T^{2} \) |
| 41 | \( 1 + 11.2T + 41T^{2} \) |
| 43 | \( 1 + 9.48iT - 43T^{2} \) |
| 47 | \( 1 + 3.95T + 47T^{2} \) |
| 53 | \( 1 - 8.05iT - 53T^{2} \) |
| 59 | \( 1 - 6.19iT - 59T^{2} \) |
| 61 | \( 1 + 7.23iT - 61T^{2} \) |
| 67 | \( 1 - 10.0iT - 67T^{2} \) |
| 71 | \( 1 - 1.63T + 71T^{2} \) |
| 73 | \( 1 + 5.17T + 73T^{2} \) |
| 79 | \( 1 - 9.17T + 79T^{2} \) |
| 83 | \( 1 - 4.61iT - 83T^{2} \) |
| 89 | \( 1 + 11.4T + 89T^{2} \) |
| 97 | \( 1 + 10.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.812558840653766556106499096117, −8.694199464523085551745973107830, −8.382199296492541997285444562624, −7.68652397920144438189681557512, −5.72429784404812563131549004863, −5.29365412245374545185412639742, −4.16971847396744260068869098352, −3.28643488840537543677468399571, −1.73884798378739091189352570121, −0.77695252867396833865789747612,
1.65744336606196738957732437215, 3.17951892189321357392739428171, 4.63956630123590814036421672536, 5.04002962889726301649267776232, 6.48540477895079732343657075812, 6.99614504082446424847762110160, 7.73207494243277605918962098777, 8.498613793238107883637758966393, 9.683331769369341709728190715290, 10.12650832606568603985346096667