Properties

Label 936.2.g.d.469.5
Level $936$
Weight $2$
Character 936.469
Analytic conductor $7.474$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(469,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.469");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.5
Root \(0.951057 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 936.469
Dual form 936.2.g.d.469.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.221232 - 1.39680i) q^{2} +(-1.90211 + 0.618034i) q^{4} -2.52015i q^{5} +2.79360 q^{7} +(1.28408 + 2.52015i) q^{8} +(-3.52015 + 0.557537i) q^{10} -5.31375i q^{11} -1.00000i q^{13} +(-0.618034 - 3.90211i) q^{14} +(3.23607 - 2.35114i) q^{16} +4.35114 q^{17} +6.02967i q^{19} +(1.55754 + 4.79360i) q^{20} +(-7.42226 + 1.17557i) q^{22} -0.568158 q^{23} -1.35114 q^{25} +(-1.39680 + 0.221232i) q^{26} +(-5.31375 + 1.72654i) q^{28} -2.68915i q^{29} +1.90868 q^{31} +(-4.00000 - 4.00000i) q^{32} +(-0.962611 - 6.07768i) q^{34} -7.04029i q^{35} -9.60845i q^{37} +(8.42226 - 1.33395i) q^{38} +(6.35114 - 3.23607i) q^{40} -11.2093 q^{41} -9.48746i q^{43} +(3.28408 + 10.1074i) q^{44} +(0.125695 + 0.793604i) q^{46} -3.95669 q^{47} +0.804226 q^{49} +(0.298915 + 1.88728i) q^{50} +(0.618034 + 1.90211i) q^{52} +8.05934i q^{53} -13.3914 q^{55} +(3.58721 + 7.04029i) q^{56} +(-3.75621 + 0.594926i) q^{58} +6.19868i q^{59} -7.23607i q^{61} +(-0.422260 - 2.66605i) q^{62} +(-4.70228 + 6.47214i) q^{64} -2.52015 q^{65} +10.0297i q^{67} +(-8.27636 + 2.68915i) q^{68} +(-9.83390 + 1.55754i) q^{70} +1.63052 q^{71} -5.17442 q^{73} +(-13.4211 + 2.12569i) q^{74} +(-3.72654 - 11.4691i) q^{76} -14.8445i q^{77} +9.17442 q^{79} +(-5.92522 - 8.15537i) q^{80} +(2.47985 + 15.6572i) q^{82} +4.61147i q^{83} -10.9655i q^{85} +(-13.2521 + 2.09893i) q^{86} +(13.3914 - 6.82328i) q^{88} -11.4182 q^{89} -2.79360i q^{91} +(1.08070 - 0.351141i) q^{92} +(0.875345 + 5.52671i) q^{94} +15.1957 q^{95} -10.2514 q^{97} +(-0.177920 - 1.12334i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 4 q^{7} + 4 q^{8} - 4 q^{10} + 4 q^{14} + 8 q^{16} + 16 q^{17} + 12 q^{20} - 20 q^{22} + 8 q^{23} + 8 q^{25} - 2 q^{26} - 4 q^{31} - 32 q^{32} + 16 q^{34} + 28 q^{38} + 32 q^{40} - 36 q^{41}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.221232 1.39680i −0.156434 0.987688i
\(3\) 0 0
\(4\) −1.90211 + 0.618034i −0.951057 + 0.309017i
\(5\) 2.52015i 1.12704i −0.826101 0.563522i \(-0.809446\pi\)
0.826101 0.563522i \(-0.190554\pi\)
\(6\) 0 0
\(7\) 2.79360 1.05588 0.527942 0.849281i \(-0.322964\pi\)
0.527942 + 0.849281i \(0.322964\pi\)
\(8\) 1.28408 + 2.52015i 0.453990 + 0.891007i
\(9\) 0 0
\(10\) −3.52015 + 0.557537i −1.11317 + 0.176309i
\(11\) 5.31375i 1.60216i −0.598560 0.801078i \(-0.704260\pi\)
0.598560 0.801078i \(-0.295740\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) −0.618034 3.90211i −0.165177 1.04288i
\(15\) 0 0
\(16\) 3.23607 2.35114i 0.809017 0.587785i
\(17\) 4.35114 1.05531 0.527653 0.849460i \(-0.323072\pi\)
0.527653 + 0.849460i \(0.323072\pi\)
\(18\) 0 0
\(19\) 6.02967i 1.38330i 0.722232 + 0.691651i \(0.243116\pi\)
−0.722232 + 0.691651i \(0.756884\pi\)
\(20\) 1.55754 + 4.79360i 0.348276 + 1.07188i
\(21\) 0 0
\(22\) −7.42226 + 1.17557i −1.58243 + 0.250632i
\(23\) −0.568158 −0.118469 −0.0592346 0.998244i \(-0.518866\pi\)
−0.0592346 + 0.998244i \(0.518866\pi\)
\(24\) 0 0
\(25\) −1.35114 −0.270228
\(26\) −1.39680 + 0.221232i −0.273935 + 0.0433871i
\(27\) 0 0
\(28\) −5.31375 + 1.72654i −1.00420 + 0.326286i
\(29\) 2.68915i 0.499363i −0.968328 0.249682i \(-0.919674\pi\)
0.968328 0.249682i \(-0.0803260\pi\)
\(30\) 0 0
\(31\) 1.90868 0.342809 0.171404 0.985201i \(-0.445170\pi\)
0.171404 + 0.985201i \(0.445170\pi\)
\(32\) −4.00000 4.00000i −0.707107 0.707107i
\(33\) 0 0
\(34\) −0.962611 6.07768i −0.165086 1.04231i
\(35\) 7.04029i 1.19003i
\(36\) 0 0
\(37\) 9.60845i 1.57962i −0.613352 0.789810i \(-0.710179\pi\)
0.613352 0.789810i \(-0.289821\pi\)
\(38\) 8.42226 1.33395i 1.36627 0.216396i
\(39\) 0 0
\(40\) 6.35114 3.23607i 1.00420 0.511667i
\(41\) −11.2093 −1.75060 −0.875299 0.483582i \(-0.839336\pi\)
−0.875299 + 0.483582i \(0.839336\pi\)
\(42\) 0 0
\(43\) 9.48746i 1.44682i −0.690417 0.723412i \(-0.742573\pi\)
0.690417 0.723412i \(-0.257427\pi\)
\(44\) 3.28408 + 10.1074i 0.495094 + 1.52374i
\(45\) 0 0
\(46\) 0.125695 + 0.793604i 0.0185327 + 0.117011i
\(47\) −3.95669 −0.577142 −0.288571 0.957458i \(-0.593180\pi\)
−0.288571 + 0.957458i \(0.593180\pi\)
\(48\) 0 0
\(49\) 0.804226 0.114889
\(50\) 0.298915 + 1.88728i 0.0422730 + 0.266901i
\(51\) 0 0
\(52\) 0.618034 + 1.90211i 0.0857059 + 0.263776i
\(53\) 8.05934i 1.10704i 0.832837 + 0.553518i \(0.186715\pi\)
−0.832837 + 0.553518i \(0.813285\pi\)
\(54\) 0 0
\(55\) −13.3914 −1.80570
\(56\) 3.58721 + 7.04029i 0.479361 + 0.940799i
\(57\) 0 0
\(58\) −3.75621 + 0.594926i −0.493215 + 0.0781176i
\(59\) 6.19868i 0.806999i 0.914980 + 0.403500i \(0.132206\pi\)
−0.914980 + 0.403500i \(0.867794\pi\)
\(60\) 0 0
\(61\) 7.23607i 0.926484i −0.886232 0.463242i \(-0.846686\pi\)
0.886232 0.463242i \(-0.153314\pi\)
\(62\) −0.422260 2.66605i −0.0536271 0.338588i
\(63\) 0 0
\(64\) −4.70228 + 6.47214i −0.587785 + 0.809017i
\(65\) −2.52015 −0.312586
\(66\) 0 0
\(67\) 10.0297i 1.22532i 0.790347 + 0.612660i \(0.209900\pi\)
−0.790347 + 0.612660i \(0.790100\pi\)
\(68\) −8.27636 + 2.68915i −1.00366 + 0.326108i
\(69\) 0 0
\(70\) −9.83390 + 1.55754i −1.17538 + 0.186161i
\(71\) 1.63052 0.193507 0.0967536 0.995308i \(-0.469154\pi\)
0.0967536 + 0.995308i \(0.469154\pi\)
\(72\) 0 0
\(73\) −5.17442 −0.605620 −0.302810 0.953051i \(-0.597925\pi\)
−0.302810 + 0.953051i \(0.597925\pi\)
\(74\) −13.4211 + 2.12569i −1.56017 + 0.247107i
\(75\) 0 0
\(76\) −3.72654 11.4691i −0.427464 1.31560i
\(77\) 14.8445i 1.69169i
\(78\) 0 0
\(79\) 9.17442 1.03220 0.516101 0.856528i \(-0.327383\pi\)
0.516101 + 0.856528i \(0.327383\pi\)
\(80\) −5.92522 8.15537i −0.662460 0.911798i
\(81\) 0 0
\(82\) 2.47985 + 15.6572i 0.273854 + 1.72905i
\(83\) 4.61147i 0.506175i 0.967443 + 0.253087i \(0.0814460\pi\)
−0.967443 + 0.253087i \(0.918554\pi\)
\(84\) 0 0
\(85\) 10.9655i 1.18938i
\(86\) −13.2521 + 2.09893i −1.42901 + 0.226333i
\(87\) 0 0
\(88\) 13.3914 6.82328i 1.42753 0.727364i
\(89\) −11.4182 −1.21033 −0.605164 0.796101i \(-0.706892\pi\)
−0.605164 + 0.796101i \(0.706892\pi\)
\(90\) 0 0
\(91\) 2.79360i 0.292849i
\(92\) 1.08070 0.351141i 0.112671 0.0366090i
\(93\) 0 0
\(94\) 0.875345 + 5.52671i 0.0902850 + 0.570037i
\(95\) 15.1957 1.55904
\(96\) 0 0
\(97\) −10.2514 −1.04087 −0.520435 0.853901i \(-0.674230\pi\)
−0.520435 + 0.853901i \(0.674230\pi\)
\(98\) −0.177920 1.12334i −0.0179727 0.113475i
\(99\) 0 0
\(100\) 2.57002 0.835051i 0.257002 0.0835051i
\(101\) 3.01905i 0.300407i 0.988655 + 0.150203i \(0.0479929\pi\)
−0.988655 + 0.150203i \(0.952007\pi\)
\(102\) 0 0
\(103\) 12.9193 1.27298 0.636488 0.771286i \(-0.280386\pi\)
0.636488 + 0.771286i \(0.280386\pi\)
\(104\) 2.52015 1.28408i 0.247121 0.125914i
\(105\) 0 0
\(106\) 11.2573 1.78298i 1.09341 0.173179i
\(107\) 10.9537i 1.05893i −0.848331 0.529466i \(-0.822392\pi\)
0.848331 0.529466i \(-0.177608\pi\)
\(108\) 0 0
\(109\) 5.45309i 0.522311i 0.965297 + 0.261155i \(0.0841035\pi\)
−0.965297 + 0.261155i \(0.915896\pi\)
\(110\) 2.96261 + 18.7052i 0.282474 + 1.78347i
\(111\) 0 0
\(112\) 9.04029 6.56816i 0.854227 0.620633i
\(113\) 13.6334 1.28252 0.641262 0.767322i \(-0.278411\pi\)
0.641262 + 0.767322i \(0.278411\pi\)
\(114\) 0 0
\(115\) 1.43184i 0.133520i
\(116\) 1.66199 + 5.11507i 0.154312 + 0.474923i
\(117\) 0 0
\(118\) 8.65833 1.37134i 0.797064 0.126242i
\(119\) 12.1554 1.11428
\(120\) 0 0
\(121\) −17.2360 −1.56691
\(122\) −10.1074 + 1.60085i −0.915077 + 0.144934i
\(123\) 0 0
\(124\) −3.63052 + 1.17963i −0.326030 + 0.105934i
\(125\) 9.19566i 0.822485i
\(126\) 0 0
\(127\) 19.4377 1.72481 0.862406 0.506217i \(-0.168956\pi\)
0.862406 + 0.506217i \(0.168956\pi\)
\(128\) 10.0806 + 5.13632i 0.891007 + 0.453990i
\(129\) 0 0
\(130\) 0.557537 + 3.52015i 0.0488992 + 0.308737i
\(131\) 12.7235i 1.11166i −0.831296 0.555830i \(-0.812401\pi\)
0.831296 0.555830i \(-0.187599\pi\)
\(132\) 0 0
\(133\) 16.8445i 1.46061i
\(134\) 14.0095 2.21888i 1.21023 0.191682i
\(135\) 0 0
\(136\) 5.58721 + 10.9655i 0.479099 + 0.940285i
\(137\) 9.23054 0.788619 0.394309 0.918978i \(-0.370984\pi\)
0.394309 + 0.918978i \(0.370984\pi\)
\(138\) 0 0
\(139\) 11.7507i 0.996681i 0.866982 + 0.498340i \(0.166057\pi\)
−0.866982 + 0.498340i \(0.833943\pi\)
\(140\) 4.35114 + 13.3914i 0.367739 + 1.13178i
\(141\) 0 0
\(142\) −0.360723 2.27751i −0.0302712 0.191125i
\(143\) −5.31375 −0.444358
\(144\) 0 0
\(145\) −6.77706 −0.562804
\(146\) 1.14475 + 7.22764i 0.0947398 + 0.598164i
\(147\) 0 0
\(148\) 5.93835 + 18.2764i 0.488129 + 1.50231i
\(149\) 17.6079i 1.44250i 0.692675 + 0.721249i \(0.256432\pi\)
−0.692675 + 0.721249i \(0.743568\pi\)
\(150\) 0 0
\(151\) −11.6250 −0.946029 −0.473014 0.881055i \(-0.656834\pi\)
−0.473014 + 0.881055i \(0.656834\pi\)
\(152\) −15.1957 + 7.74258i −1.23253 + 0.628006i
\(153\) 0 0
\(154\) −20.7349 + 3.28408i −1.67086 + 0.264639i
\(155\) 4.81015i 0.386360i
\(156\) 0 0
\(157\) 13.4781i 1.07567i −0.843051 0.537833i \(-0.819243\pi\)
0.843051 0.537833i \(-0.180757\pi\)
\(158\) −2.02967 12.8148i −0.161472 1.01949i
\(159\) 0 0
\(160\) −10.0806 + 10.0806i −0.796940 + 0.796940i
\(161\) −1.58721 −0.125090
\(162\) 0 0
\(163\) 9.79349i 0.767085i −0.923523 0.383543i \(-0.874704\pi\)
0.923523 0.383543i \(-0.125296\pi\)
\(164\) 21.3214 6.92773i 1.66492 0.540965i
\(165\) 0 0
\(166\) 6.44131 1.02020i 0.499943 0.0791831i
\(167\) 16.6054 1.28497 0.642484 0.766299i \(-0.277904\pi\)
0.642484 + 0.766299i \(0.277904\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) −15.3167 + 2.42592i −1.17473 + 0.186060i
\(171\) 0 0
\(172\) 5.86357 + 18.0462i 0.447093 + 1.37601i
\(173\) 16.1979i 1.23150i 0.787942 + 0.615750i \(0.211147\pi\)
−0.787942 + 0.615750i \(0.788853\pi\)
\(174\) 0 0
\(175\) −3.77455 −0.285329
\(176\) −12.4934 17.1957i −0.941724 1.29617i
\(177\) 0 0
\(178\) 2.52607 + 15.9490i 0.189337 + 1.19543i
\(179\) 1.22795i 0.0917816i 0.998946 + 0.0458908i \(0.0146126\pi\)
−0.998946 + 0.0458908i \(0.985387\pi\)
\(180\) 0 0
\(181\) 7.00592i 0.520746i −0.965508 0.260373i \(-0.916154\pi\)
0.965508 0.260373i \(-0.0838455\pi\)
\(182\) −3.90211 + 0.618034i −0.289244 + 0.0458117i
\(183\) 0 0
\(184\) −0.729560 1.43184i −0.0537839 0.105557i
\(185\) −24.2147 −1.78030
\(186\) 0 0
\(187\) 23.1209i 1.69077i
\(188\) 7.52607 2.44537i 0.548895 0.178347i
\(189\) 0 0
\(190\) −3.36176 21.2253i −0.243888 1.53985i
\(191\) 14.3701 1.03978 0.519891 0.854232i \(-0.325972\pi\)
0.519891 + 0.854232i \(0.325972\pi\)
\(192\) 0 0
\(193\) −3.67383 −0.264448 −0.132224 0.991220i \(-0.542212\pi\)
−0.132224 + 0.991220i \(0.542212\pi\)
\(194\) 2.26793 + 14.3192i 0.162828 + 1.02806i
\(195\) 0 0
\(196\) −1.52973 + 0.497039i −0.109266 + 0.0355028i
\(197\) 6.88442i 0.490494i −0.969461 0.245247i \(-0.921131\pi\)
0.969461 0.245247i \(-0.0788691\pi\)
\(198\) 0 0
\(199\) 15.3952 1.09133 0.545667 0.838002i \(-0.316276\pi\)
0.545667 + 0.838002i \(0.316276\pi\)
\(200\) −1.73497 3.40507i −0.122681 0.240775i
\(201\) 0 0
\(202\) 4.21702 0.667910i 0.296708 0.0469940i
\(203\) 7.51243i 0.527269i
\(204\) 0 0
\(205\) 28.2491i 1.97300i
\(206\) −2.85816 18.0457i −0.199137 1.25730i
\(207\) 0 0
\(208\) −2.35114 3.23607i −0.163022 0.224381i
\(209\) 32.0402 2.21627
\(210\) 0 0
\(211\) 1.57035i 0.108107i 0.998538 + 0.0540537i \(0.0172142\pi\)
−0.998538 + 0.0540537i \(0.982786\pi\)
\(212\) −4.98095 15.3298i −0.342093 1.05285i
\(213\) 0 0
\(214\) −15.3001 + 2.42330i −1.04589 + 0.165653i
\(215\) −23.9098 −1.63063
\(216\) 0 0
\(217\) 5.33209 0.361966
\(218\) 7.61688 1.20640i 0.515880 0.0817074i
\(219\) 0 0
\(220\) 25.4720 8.27636i 1.71732 0.557992i
\(221\) 4.35114i 0.292689i
\(222\) 0 0
\(223\) 27.6571 1.85205 0.926027 0.377457i \(-0.123202\pi\)
0.926027 + 0.377457i \(0.123202\pi\)
\(224\) −11.1744 11.1744i −0.746622 0.746622i
\(225\) 0 0
\(226\) −3.01615 19.0432i −0.200631 1.26673i
\(227\) 22.9434i 1.52281i 0.648276 + 0.761405i \(0.275490\pi\)
−0.648276 + 0.761405i \(0.724510\pi\)
\(228\) 0 0
\(229\) 23.5064i 1.55335i 0.629904 + 0.776673i \(0.283094\pi\)
−0.629904 + 0.776673i \(0.716906\pi\)
\(230\) 2.00000 0.316769i 0.131876 0.0208871i
\(231\) 0 0
\(232\) 6.77706 3.45309i 0.444936 0.226706i
\(233\) −3.47433 −0.227611 −0.113805 0.993503i \(-0.536304\pi\)
−0.113805 + 0.993503i \(0.536304\pi\)
\(234\) 0 0
\(235\) 9.97144i 0.650465i
\(236\) −3.83099 11.7906i −0.249376 0.767502i
\(237\) 0 0
\(238\) −2.68915 16.9786i −0.174312 1.10056i
\(239\) 11.5820 0.749177 0.374589 0.927191i \(-0.377784\pi\)
0.374589 + 0.927191i \(0.377784\pi\)
\(240\) 0 0
\(241\) 10.0058 0.644531 0.322265 0.946649i \(-0.395556\pi\)
0.322265 + 0.946649i \(0.395556\pi\)
\(242\) 3.81314 + 24.0752i 0.245118 + 1.54761i
\(243\) 0 0
\(244\) 4.47214 + 13.7638i 0.286299 + 0.881138i
\(245\) 2.02677i 0.129485i
\(246\) 0 0
\(247\) 6.02967 0.383659
\(248\) 2.45089 + 4.81015i 0.155632 + 0.305445i
\(249\) 0 0
\(250\) −12.8445 + 2.03437i −0.812359 + 0.128665i
\(251\) 11.3723i 0.717811i 0.933374 + 0.358906i \(0.116850\pi\)
−0.933374 + 0.358906i \(0.883150\pi\)
\(252\) 0 0
\(253\) 3.01905i 0.189806i
\(254\) −4.30023 27.1506i −0.269820 1.70358i
\(255\) 0 0
\(256\) 4.94427 15.2169i 0.309017 0.951057i
\(257\) −11.3510 −0.708058 −0.354029 0.935235i \(-0.615189\pi\)
−0.354029 + 0.935235i \(0.615189\pi\)
\(258\) 0 0
\(259\) 26.8422i 1.66789i
\(260\) 4.79360 1.55754i 0.297287 0.0965943i
\(261\) 0 0
\(262\) −17.7722 + 2.81485i −1.09797 + 0.173902i
\(263\) −3.88712 −0.239690 −0.119845 0.992793i \(-0.538240\pi\)
−0.119845 + 0.992793i \(0.538240\pi\)
\(264\) 0 0
\(265\) 20.3107 1.24768
\(266\) 23.5285 3.72654i 1.44262 0.228489i
\(267\) 0 0
\(268\) −6.19868 19.0776i −0.378645 1.16535i
\(269\) 25.2300i 1.53830i −0.639067 0.769151i \(-0.720679\pi\)
0.639067 0.769151i \(-0.279321\pi\)
\(270\) 0 0
\(271\) −2.90649 −0.176556 −0.0882782 0.996096i \(-0.528136\pi\)
−0.0882782 + 0.996096i \(0.528136\pi\)
\(272\) 14.0806 10.2301i 0.853761 0.620294i
\(273\) 0 0
\(274\) −2.04209 12.8932i −0.123367 0.778909i
\(275\) 7.17963i 0.432948i
\(276\) 0 0
\(277\) 4.26825i 0.256454i 0.991745 + 0.128227i \(0.0409286\pi\)
−0.991745 + 0.128227i \(0.959071\pi\)
\(278\) 16.4134 2.59963i 0.984410 0.155915i
\(279\) 0 0
\(280\) 17.7426 9.04029i 1.06032 0.540261i
\(281\) 18.9900 1.13285 0.566424 0.824114i \(-0.308327\pi\)
0.566424 + 0.824114i \(0.308327\pi\)
\(282\) 0 0
\(283\) 13.1957i 0.784401i 0.919880 + 0.392200i \(0.128286\pi\)
−0.919880 + 0.392200i \(0.871714\pi\)
\(284\) −3.10143 + 1.00772i −0.184036 + 0.0597970i
\(285\) 0 0
\(286\) 1.17557 + 7.42226i 0.0695129 + 0.438887i
\(287\) −31.3144 −1.84843
\(288\) 0 0
\(289\) 1.93243 0.113672
\(290\) 1.49930 + 9.46621i 0.0880420 + 0.555875i
\(291\) 0 0
\(292\) 9.84233 3.19797i 0.575979 0.187147i
\(293\) 12.0980i 0.706770i −0.935478 0.353385i \(-0.885031\pi\)
0.935478 0.353385i \(-0.114969\pi\)
\(294\) 0 0
\(295\) 15.6216 0.909524
\(296\) 24.2147 12.3380i 1.40745 0.717132i
\(297\) 0 0
\(298\) 24.5948 3.89544i 1.42474 0.225657i
\(299\) 0.568158i 0.0328574i
\(300\) 0 0
\(301\) 26.5042i 1.52768i
\(302\) 2.57182 + 16.2378i 0.147991 + 0.934382i
\(303\) 0 0
\(304\) 14.1766 + 19.5124i 0.813084 + 1.11911i
\(305\) −18.2360 −1.04419
\(306\) 0 0
\(307\) 24.7863i 1.41463i 0.706900 + 0.707314i \(0.250093\pi\)
−0.706900 + 0.707314i \(0.749907\pi\)
\(308\) 9.17442 + 28.2360i 0.522761 + 1.60889i
\(309\) 0 0
\(310\) −6.71883 + 1.06416i −0.381604 + 0.0604401i
\(311\) 6.72956 0.381598 0.190799 0.981629i \(-0.438892\pi\)
0.190799 + 0.981629i \(0.438892\pi\)
\(312\) 0 0
\(313\) 11.4956 0.649768 0.324884 0.945754i \(-0.394675\pi\)
0.324884 + 0.945754i \(0.394675\pi\)
\(314\) −18.8262 + 2.98177i −1.06242 + 0.168271i
\(315\) 0 0
\(316\) −17.4508 + 5.67010i −0.981683 + 0.318968i
\(317\) 2.86756i 0.161058i 0.996752 + 0.0805291i \(0.0256610\pi\)
−0.996752 + 0.0805291i \(0.974339\pi\)
\(318\) 0 0
\(319\) −14.2895 −0.800058
\(320\) 16.3107 + 11.8504i 0.911798 + 0.662460i
\(321\) 0 0
\(322\) 0.351141 + 2.21702i 0.0195683 + 0.123550i
\(323\) 26.2360i 1.45981i
\(324\) 0 0
\(325\) 1.35114i 0.0749478i
\(326\) −13.6796 + 2.16663i −0.757641 + 0.119999i
\(327\) 0 0
\(328\) −14.3936 28.2491i −0.794755 1.55979i
\(329\) −11.0534 −0.609395
\(330\) 0 0
\(331\) 1.44967i 0.0796811i 0.999206 + 0.0398405i \(0.0126850\pi\)
−0.999206 + 0.0398405i \(0.987315\pi\)
\(332\) −2.85004 8.77154i −0.156417 0.481401i
\(333\) 0 0
\(334\) −3.67365 23.1945i −0.201013 1.26915i
\(335\) 25.2762 1.38099
\(336\) 0 0
\(337\) −22.6774 −1.23532 −0.617660 0.786446i \(-0.711919\pi\)
−0.617660 + 0.786446i \(0.711919\pi\)
\(338\) 0.221232 + 1.39680i 0.0120334 + 0.0759760i
\(339\) 0 0
\(340\) 6.77706 + 20.8576i 0.367538 + 1.13116i
\(341\) 10.1422i 0.549233i
\(342\) 0 0
\(343\) −17.3085 −0.934573
\(344\) 23.9098 12.1826i 1.28913 0.656844i
\(345\) 0 0
\(346\) 22.6252 3.58348i 1.21634 0.192649i
\(347\) 33.7652i 1.81261i 0.422621 + 0.906307i \(0.361110\pi\)
−0.422621 + 0.906307i \(0.638890\pi\)
\(348\) 0 0
\(349\) 6.34741i 0.339769i −0.985464 0.169885i \(-0.945661\pi\)
0.985464 0.169885i \(-0.0543395\pi\)
\(350\) 0.835051 + 5.27230i 0.0446354 + 0.281817i
\(351\) 0 0
\(352\) −21.2550 + 21.2550i −1.13290 + 1.13290i
\(353\) −32.1856 −1.71307 −0.856534 0.516090i \(-0.827387\pi\)
−0.856534 + 0.516090i \(0.827387\pi\)
\(354\) 0 0
\(355\) 4.10915i 0.218091i
\(356\) 21.7187 7.05684i 1.15109 0.374012i
\(357\) 0 0
\(358\) 1.71521 0.271662i 0.0906516 0.0143578i
\(359\) −22.9222 −1.20979 −0.604894 0.796306i \(-0.706784\pi\)
−0.604894 + 0.796306i \(0.706784\pi\)
\(360\) 0 0
\(361\) −17.3570 −0.913524
\(362\) −9.78589 + 1.54993i −0.514335 + 0.0814626i
\(363\) 0 0
\(364\) 1.72654 + 5.31375i 0.0904954 + 0.278516i
\(365\) 13.0403i 0.682560i
\(366\) 0 0
\(367\) −9.68093 −0.505340 −0.252670 0.967552i \(-0.581309\pi\)
−0.252670 + 0.967552i \(0.581309\pi\)
\(368\) −1.83860 + 1.33582i −0.0958436 + 0.0696344i
\(369\) 0 0
\(370\) 5.35706 + 33.8232i 0.278500 + 1.75838i
\(371\) 22.5146i 1.16890i
\(372\) 0 0
\(373\) 23.2975i 1.20630i 0.797628 + 0.603149i \(0.206088\pi\)
−0.797628 + 0.603149i \(0.793912\pi\)
\(374\) −32.2953 + 5.11507i −1.66995 + 0.264494i
\(375\) 0 0
\(376\) −5.08070 9.97144i −0.262017 0.514238i
\(377\) −2.68915 −0.138498
\(378\) 0 0
\(379\) 9.48276i 0.487097i −0.969889 0.243548i \(-0.921689\pi\)
0.969889 0.243548i \(-0.0783114\pi\)
\(380\) −28.9039 + 9.39144i −1.48274 + 0.481770i
\(381\) 0 0
\(382\) −3.17912 20.0722i −0.162658 1.02698i
\(383\) 5.68406 0.290442 0.145221 0.989399i \(-0.453611\pi\)
0.145221 + 0.989399i \(0.453611\pi\)
\(384\) 0 0
\(385\) −37.4104 −1.90661
\(386\) 0.812768 + 5.13162i 0.0413688 + 0.261192i
\(387\) 0 0
\(388\) 19.4993 6.33571i 0.989927 0.321647i
\(389\) 1.79842i 0.0911834i 0.998960 + 0.0455917i \(0.0145173\pi\)
−0.998960 + 0.0455917i \(0.985483\pi\)
\(390\) 0 0
\(391\) −2.47214 −0.125021
\(392\) 1.03269 + 2.02677i 0.0521587 + 0.102367i
\(393\) 0 0
\(394\) −9.61617 + 1.52305i −0.484456 + 0.0767302i
\(395\) 23.1209i 1.16334i
\(396\) 0 0
\(397\) 4.61064i 0.231402i −0.993284 0.115701i \(-0.963089\pi\)
0.993284 0.115701i \(-0.0369114\pi\)
\(398\) −3.40590 21.5040i −0.170722 1.07790i
\(399\) 0 0
\(400\) −4.37238 + 3.17672i −0.218619 + 0.158836i
\(401\) 19.4701 0.972290 0.486145 0.873878i \(-0.338403\pi\)
0.486145 + 0.873878i \(0.338403\pi\)
\(402\) 0 0
\(403\) 1.90868i 0.0950780i
\(404\) −1.86588 5.74258i −0.0928308 0.285704i
\(405\) 0 0
\(406\) −10.4934 + 1.66199i −0.520778 + 0.0824831i
\(407\) −51.0569 −2.53080
\(408\) 0 0
\(409\) 34.5696 1.70936 0.854678 0.519159i \(-0.173755\pi\)
0.854678 + 0.519159i \(0.173755\pi\)
\(410\) 39.4584 6.24959i 1.94871 0.308645i
\(411\) 0 0
\(412\) −24.5740 + 7.98457i −1.21067 + 0.393371i
\(413\) 17.3167i 0.852097i
\(414\) 0 0
\(415\) 11.6216 0.570481
\(416\) −4.00000 + 4.00000i −0.196116 + 0.196116i
\(417\) 0 0
\(418\) −7.08831 44.7538i −0.346700 2.18898i
\(419\) 5.72235i 0.279555i 0.990183 + 0.139778i \(0.0446388\pi\)
−0.990183 + 0.139778i \(0.955361\pi\)
\(420\) 0 0
\(421\) 30.8897i 1.50547i −0.658322 0.752736i \(-0.728734\pi\)
0.658322 0.752736i \(-0.271266\pi\)
\(422\) 2.19347 0.347411i 0.106776 0.0169117i
\(423\) 0 0
\(424\) −20.3107 + 10.3488i −0.986376 + 0.502584i
\(425\) −5.87901 −0.285174
\(426\) 0 0
\(427\) 20.2147i 0.978258i
\(428\) 6.76974 + 20.8351i 0.327228 + 1.00710i
\(429\) 0 0
\(430\) 5.28960 + 33.3972i 0.255087 + 1.61056i
\(431\) −16.3709 −0.788559 −0.394279 0.918991i \(-0.629006\pi\)
−0.394279 + 0.918991i \(0.629006\pi\)
\(432\) 0 0
\(433\) −9.17672 −0.441005 −0.220503 0.975386i \(-0.570770\pi\)
−0.220503 + 0.975386i \(0.570770\pi\)
\(434\) −1.17963 7.44788i −0.0566239 0.357509i
\(435\) 0 0
\(436\) −3.37019 10.3724i −0.161403 0.496747i
\(437\) 3.42581i 0.163879i
\(438\) 0 0
\(439\) −19.1494 −0.913953 −0.456977 0.889479i \(-0.651068\pi\)
−0.456977 + 0.889479i \(0.651068\pi\)
\(440\) −17.1957 33.7484i −0.819771 1.60889i
\(441\) 0 0
\(442\) −6.07768 + 0.962611i −0.289086 + 0.0457867i
\(443\) 5.89817i 0.280230i −0.990135 0.140115i \(-0.955253\pi\)
0.990135 0.140115i \(-0.0447473\pi\)
\(444\) 0 0
\(445\) 28.7756i 1.36409i
\(446\) −6.11862 38.6314i −0.289725 1.82925i
\(447\) 0 0
\(448\) −13.1363 + 18.0806i −0.620633 + 0.854227i
\(449\) 21.8310 1.03027 0.515134 0.857110i \(-0.327742\pi\)
0.515134 + 0.857110i \(0.327742\pi\)
\(450\) 0 0
\(451\) 59.5634i 2.80473i
\(452\) −25.9323 + 8.42592i −1.21975 + 0.396322i
\(453\) 0 0
\(454\) 32.0475 5.07582i 1.50406 0.238220i
\(455\) −7.04029 −0.330054
\(456\) 0 0
\(457\) 6.84244 0.320076 0.160038 0.987111i \(-0.448838\pi\)
0.160038 + 0.987111i \(0.448838\pi\)
\(458\) 32.8338 5.20036i 1.53422 0.242997i
\(459\) 0 0
\(460\) −0.884927 2.72353i −0.0412599 0.126985i
\(461\) 22.2688i 1.03716i −0.855029 0.518580i \(-0.826461\pi\)
0.855029 0.518580i \(-0.173539\pi\)
\(462\) 0 0
\(463\) 26.4021 1.22701 0.613504 0.789692i \(-0.289760\pi\)
0.613504 + 0.789692i \(0.289760\pi\)
\(464\) −6.32258 8.70228i −0.293518 0.403993i
\(465\) 0 0
\(466\) 0.768632 + 4.85295i 0.0356062 + 0.224809i
\(467\) 11.3035i 0.523065i −0.965195 0.261532i \(-0.915772\pi\)
0.965195 0.261532i \(-0.0842278\pi\)
\(468\) 0 0
\(469\) 28.0189i 1.29379i
\(470\) 13.9281 2.20600i 0.642457 0.101755i
\(471\) 0 0
\(472\) −15.6216 + 7.95959i −0.719042 + 0.366370i
\(473\) −50.4140 −2.31804
\(474\) 0 0
\(475\) 8.14694i 0.373807i
\(476\) −23.1209 + 7.51243i −1.05974 + 0.344332i
\(477\) 0 0
\(478\) −2.56231 16.1778i −0.117197 0.739954i
\(479\) 40.4023 1.84603 0.923015 0.384764i \(-0.125717\pi\)
0.923015 + 0.384764i \(0.125717\pi\)
\(480\) 0 0
\(481\) −9.60845 −0.438108
\(482\) −2.21360 13.9761i −0.100827 0.636596i
\(483\) 0 0
\(484\) 32.7847 10.6524i 1.49022 0.484200i
\(485\) 25.8350i 1.17311i
\(486\) 0 0
\(487\) −36.4018 −1.64952 −0.824762 0.565480i \(-0.808691\pi\)
−0.824762 + 0.565480i \(0.808691\pi\)
\(488\) 18.2360 9.29168i 0.825503 0.420615i
\(489\) 0 0
\(490\) −2.83099 + 0.448385i −0.127891 + 0.0202560i
\(491\) 3.76382i 0.169859i 0.996387 + 0.0849294i \(0.0270665\pi\)
−0.996387 + 0.0849294i \(0.972934\pi\)
\(492\) 0 0
\(493\) 11.7009i 0.526981i
\(494\) −1.33395 8.42226i −0.0600175 0.378935i
\(495\) 0 0
\(496\) 6.17661 4.48757i 0.277338 0.201498i
\(497\) 4.55503 0.204321
\(498\) 0 0
\(499\) 16.9348i 0.758107i 0.925375 + 0.379053i \(0.123750\pi\)
−0.925375 + 0.379053i \(0.876250\pi\)
\(500\) 5.68323 + 17.4912i 0.254162 + 0.782230i
\(501\) 0 0
\(502\) 15.8848 2.51591i 0.708974 0.112290i
\(503\) 12.9809 0.578792 0.289396 0.957209i \(-0.406546\pi\)
0.289396 + 0.957209i \(0.406546\pi\)
\(504\) 0 0
\(505\) 7.60845 0.338572
\(506\) 4.21702 0.667910i 0.187469 0.0296922i
\(507\) 0 0
\(508\) −36.9726 + 12.0131i −1.64039 + 0.532996i
\(509\) 13.4857i 0.597741i 0.954294 + 0.298871i \(0.0966099\pi\)
−0.954294 + 0.298871i \(0.903390\pi\)
\(510\) 0 0
\(511\) −14.4553 −0.639464
\(512\) −22.3488 3.53971i −0.987688 0.156434i
\(513\) 0 0
\(514\) 2.51121 + 15.8551i 0.110765 + 0.699340i
\(515\) 32.5585i 1.43470i
\(516\) 0 0
\(517\) 21.0249i 0.924672i
\(518\) −37.4933 + 5.93835i −1.64736 + 0.260916i
\(519\) 0 0
\(520\) −3.23607 6.35114i −0.141911 0.278516i
\(521\) 35.4175 1.55167 0.775834 0.630937i \(-0.217330\pi\)
0.775834 + 0.630937i \(0.217330\pi\)
\(522\) 0 0
\(523\) 4.72122i 0.206445i 0.994658 + 0.103222i \(0.0329153\pi\)
−0.994658 + 0.103222i \(0.967085\pi\)
\(524\) 7.86357 + 24.2016i 0.343522 + 1.05725i
\(525\) 0 0
\(526\) 0.859954 + 5.42954i 0.0374958 + 0.236739i
\(527\) 8.30493 0.361768
\(528\) 0 0
\(529\) −22.6772 −0.985965
\(530\) −4.49338 28.3701i −0.195180 1.23232i
\(531\) 0 0
\(532\) −10.4105 32.0402i −0.451352 1.38912i
\(533\) 11.2093i 0.485529i
\(534\) 0 0
\(535\) −27.6049 −1.19346
\(536\) −25.2762 + 12.8789i −1.09177 + 0.556283i
\(537\) 0 0
\(538\) −35.2414 + 5.58168i −1.51936 + 0.240643i
\(539\) 4.27346i 0.184071i
\(540\) 0 0
\(541\) 26.4200i 1.13589i −0.823068 0.567943i \(-0.807739\pi\)
0.823068 0.567943i \(-0.192261\pi\)
\(542\) 0.643007 + 4.05979i 0.0276195 + 0.174383i
\(543\) 0 0
\(544\) −17.4046 17.4046i −0.746215 0.746215i
\(545\) 13.7426 0.588667
\(546\) 0 0
\(547\) 26.9939i 1.15417i −0.816683 0.577087i \(-0.804189\pi\)
0.816683 0.577087i \(-0.195811\pi\)
\(548\) −17.5575 + 5.70479i −0.750021 + 0.243697i
\(549\) 0 0
\(550\) 10.0285 1.58836i 0.427618 0.0677280i
\(551\) 16.2147 0.690770
\(552\) 0 0
\(553\) 25.6297 1.08989
\(554\) 5.96190 0.944272i 0.253297 0.0401183i
\(555\) 0 0
\(556\) −7.26233 22.3511i −0.307991 0.947900i
\(557\) 24.7636i 1.04927i 0.851329 + 0.524633i \(0.175797\pi\)
−0.851329 + 0.524633i \(0.824203\pi\)
\(558\) 0 0
\(559\) −9.48746 −0.401277
\(560\) −16.5527 22.7829i −0.699480 0.962752i
\(561\) 0 0
\(562\) −4.20119 26.5252i −0.177216 1.11890i
\(563\) 19.7426i 0.832050i 0.909353 + 0.416025i \(0.136577\pi\)
−0.909353 + 0.416025i \(0.863423\pi\)
\(564\) 0 0
\(565\) 34.3582i 1.44546i
\(566\) 18.4317 2.91930i 0.774743 0.122707i
\(567\) 0 0
\(568\) 2.09372 + 4.10915i 0.0878504 + 0.172416i
\(569\) −2.17684 −0.0912577 −0.0456289 0.998958i \(-0.514529\pi\)
−0.0456289 + 0.998958i \(0.514529\pi\)
\(570\) 0 0
\(571\) 4.05934i 0.169878i −0.996386 0.0849391i \(-0.972930\pi\)
0.996386 0.0849391i \(-0.0270696\pi\)
\(572\) 10.1074 3.28408i 0.422610 0.137314i
\(573\) 0 0
\(574\) 6.92773 + 43.7400i 0.289158 + 1.82567i
\(575\) 0.767662 0.0320137
\(576\) 0 0
\(577\) −27.5489 −1.14687 −0.573437 0.819249i \(-0.694390\pi\)
−0.573437 + 0.819249i \(0.694390\pi\)
\(578\) −0.427514 2.69922i −0.0177823 0.112273i
\(579\) 0 0
\(580\) 12.8907 4.18845i 0.535259 0.173916i
\(581\) 12.8826i 0.534461i
\(582\) 0 0
\(583\) 42.8254 1.77365
\(584\) −6.64436 13.0403i −0.274946 0.539611i
\(585\) 0 0
\(586\) −16.8985 + 2.67645i −0.698069 + 0.110563i
\(587\) 14.3268i 0.591329i 0.955292 + 0.295664i \(0.0955410\pi\)
−0.955292 + 0.295664i \(0.904459\pi\)
\(588\) 0 0
\(589\) 11.5087i 0.474208i
\(590\) −3.45599 21.8203i −0.142281 0.898326i
\(591\) 0 0
\(592\) −22.5908 31.0936i −0.928477 1.27794i
\(593\) −27.6050 −1.13360 −0.566801 0.823855i \(-0.691819\pi\)
−0.566801 + 0.823855i \(0.691819\pi\)
\(594\) 0 0
\(595\) 30.6333i 1.25584i
\(596\) −10.8823 33.4923i −0.445757 1.37190i
\(597\) 0 0
\(598\) 0.793604 0.125695i 0.0324529 0.00514003i
\(599\) 18.5204 0.756724 0.378362 0.925658i \(-0.376487\pi\)
0.378362 + 0.925658i \(0.376487\pi\)
\(600\) 0 0
\(601\) 35.1640 1.43437 0.717185 0.696883i \(-0.245430\pi\)
0.717185 + 0.696883i \(0.245430\pi\)
\(602\) −37.0211 + 5.86357i −1.50887 + 0.238981i
\(603\) 0 0
\(604\) 22.1121 7.18464i 0.899727 0.292339i
\(605\) 43.4371i 1.76597i
\(606\) 0 0
\(607\) −35.5432 −1.44265 −0.721327 0.692594i \(-0.756468\pi\)
−0.721327 + 0.692594i \(0.756468\pi\)
\(608\) 24.1187 24.1187i 0.978142 0.978142i
\(609\) 0 0
\(610\) 4.03437 + 25.4720i 0.163347 + 1.03133i
\(611\) 3.95669i 0.160070i
\(612\) 0 0
\(613\) 37.3356i 1.50797i −0.656891 0.753985i \(-0.728129\pi\)
0.656891 0.753985i \(-0.271871\pi\)
\(614\) 34.6215 5.48351i 1.39721 0.221297i
\(615\) 0 0
\(616\) 37.4104 19.0615i 1.50731 0.768011i
\(617\) −20.1630 −0.811731 −0.405865 0.913933i \(-0.633030\pi\)
−0.405865 + 0.913933i \(0.633030\pi\)
\(618\) 0 0
\(619\) 15.1066i 0.607187i 0.952802 + 0.303594i \(0.0981865\pi\)
−0.952802 + 0.303594i \(0.901813\pi\)
\(620\) 2.97283 + 9.14945i 0.119392 + 0.367451i
\(621\) 0 0
\(622\) −1.48879 9.39986i −0.0596951 0.376900i
\(623\) −31.8979 −1.27796
\(624\) 0 0
\(625\) −29.9301 −1.19720
\(626\) −2.54319 16.0570i −0.101646 0.641768i
\(627\) 0 0
\(628\) 8.32990 + 25.6368i 0.332399 + 1.02302i
\(629\) 41.8077i 1.66698i
\(630\) 0 0
\(631\) 0.390213 0.0155341 0.00776706 0.999970i \(-0.497528\pi\)
0.00776706 + 0.999970i \(0.497528\pi\)
\(632\) 11.7807 + 23.1209i 0.468610 + 0.919699i
\(633\) 0 0
\(634\) 4.00541 0.634395i 0.159075 0.0251950i
\(635\) 48.9857i 1.94394i
\(636\) 0 0
\(637\) 0.804226i 0.0318646i
\(638\) 3.16129 + 19.9596i 0.125157 + 0.790208i
\(639\) 0 0
\(640\) 12.9443 25.4046i 0.511667 1.00420i
\(641\) 36.5386 1.44319 0.721593 0.692317i \(-0.243410\pi\)
0.721593 + 0.692317i \(0.243410\pi\)
\(642\) 0 0
\(643\) 29.1064i 1.14785i 0.818910 + 0.573923i \(0.194579\pi\)
−0.818910 + 0.573923i \(0.805421\pi\)
\(644\) 3.01905 0.980949i 0.118967 0.0386548i
\(645\) 0 0
\(646\) 36.6464 5.80423i 1.44183 0.228364i
\(647\) 15.1906 0.597206 0.298603 0.954377i \(-0.403479\pi\)
0.298603 + 0.954377i \(0.403479\pi\)
\(648\) 0 0
\(649\) 32.9382 1.29294
\(650\) 1.88728 0.298915i 0.0740251 0.0117244i
\(651\) 0 0
\(652\) 6.05271 + 18.6283i 0.237042 + 0.729542i
\(653\) 15.9205i 0.623016i 0.950243 + 0.311508i \(0.100834\pi\)
−0.950243 + 0.311508i \(0.899166\pi\)
\(654\) 0 0
\(655\) −32.0652 −1.25289
\(656\) −36.2741 + 26.3546i −1.41626 + 1.02898i
\(657\) 0 0
\(658\) 2.44537 + 15.4394i 0.0953304 + 0.601892i
\(659\) 7.56597i 0.294728i 0.989082 + 0.147364i \(0.0470789\pi\)
−0.989082 + 0.147364i \(0.952921\pi\)
\(660\) 0 0
\(661\) 32.0806i 1.24779i 0.781508 + 0.623895i \(0.214451\pi\)
−0.781508 + 0.623895i \(0.785549\pi\)
\(662\) 2.02490 0.320713i 0.0787001 0.0124649i
\(663\) 0 0
\(664\) −11.6216 + 5.92149i −0.451005 + 0.229798i
\(665\) 42.4507 1.64617
\(666\) 0 0
\(667\) 1.52786i 0.0591591i
\(668\) −31.5854 + 10.2627i −1.22208 + 0.397077i
\(669\) 0 0
\(670\) −5.59191 35.3059i −0.216034 1.36399i
\(671\) −38.4507 −1.48437
\(672\) 0 0
\(673\) 19.0592 0.734679 0.367340 0.930087i \(-0.380269\pi\)
0.367340 + 0.930087i \(0.380269\pi\)
\(674\) 5.01697 + 31.6759i 0.193247 + 1.22011i
\(675\) 0 0
\(676\) 1.90211 0.618034i 0.0731582 0.0237705i
\(677\) 4.40095i 0.169142i −0.996417 0.0845711i \(-0.973048\pi\)
0.996417 0.0845711i \(-0.0269520\pi\)
\(678\) 0 0
\(679\) −28.6383 −1.09904
\(680\) 27.6347 14.0806i 1.05974 0.539966i
\(681\) 0 0
\(682\) −14.1667 + 2.24379i −0.542471 + 0.0859190i
\(683\) 33.8071i 1.29359i −0.762662 0.646797i \(-0.776108\pi\)
0.762662 0.646797i \(-0.223892\pi\)
\(684\) 0 0
\(685\) 23.2623i 0.888808i
\(686\) 3.82920 + 24.1766i 0.146199 + 0.923067i
\(687\) 0 0
\(688\) −22.3063 30.7021i −0.850422 1.17050i
\(689\) 8.05934 0.307037
\(690\) 0 0
\(691\) 12.4856i 0.474974i 0.971391 + 0.237487i \(0.0763237\pi\)
−0.971391 + 0.237487i \(0.923676\pi\)
\(692\) −10.0108 30.8101i −0.380554 1.17123i
\(693\) 0 0
\(694\) 47.1634 7.46994i 1.79030 0.283555i
\(695\) 29.6135 1.12330
\(696\) 0 0
\(697\) −48.7732 −1.84742
\(698\) −8.86608 + 1.40425i −0.335586 + 0.0531516i
\(699\) 0 0
\(700\) 7.17963 2.33280i 0.271364 0.0881716i
\(701\) 34.2016i 1.29178i 0.763432 + 0.645888i \(0.223513\pi\)
−0.763432 + 0.645888i \(0.776487\pi\)
\(702\) 0 0
\(703\) 57.9358 2.18509
\(704\) 34.3913 + 24.9868i 1.29617 + 0.941724i
\(705\) 0 0
\(706\) 7.12048 + 44.9570i 0.267983 + 1.69198i
\(707\) 8.43403i 0.317195i
\(708\) 0 0
\(709\) 41.6463i 1.56406i −0.623240 0.782030i \(-0.714184\pi\)
0.623240 0.782030i \(-0.285816\pi\)
\(710\) −5.73967 + 0.909075i −0.215406 + 0.0341170i
\(711\) 0 0
\(712\) −14.6619 28.7756i −0.549477 1.07841i
\(713\) −1.08443 −0.0406122
\(714\) 0 0
\(715\) 13.3914i 0.500811i
\(716\) −0.758917 2.33571i −0.0283621 0.0872895i
\(717\) 0 0
\(718\) 5.07112 + 32.0178i 0.189252 + 1.19489i
\(719\) −33.0401 −1.23219 −0.616093 0.787673i \(-0.711286\pi\)
−0.616093 + 0.787673i \(0.711286\pi\)
\(720\) 0 0
\(721\) 36.0914 1.34411
\(722\) 3.83991 + 24.2442i 0.142907 + 0.902277i
\(723\) 0 0
\(724\) 4.32990 + 13.3261i 0.160919 + 0.495259i
\(725\) 3.63342i 0.134942i
\(726\) 0 0
\(727\) −7.80551 −0.289490 −0.144745 0.989469i \(-0.546236\pi\)
−0.144745 + 0.989469i \(0.546236\pi\)
\(728\) 7.04029 3.58721i 0.260931 0.132951i
\(729\) 0 0
\(730\) 18.2147 2.88493i 0.674157 0.106776i
\(731\) 41.2813i 1.52684i
\(732\) 0 0
\(733\) 29.3035i 1.08235i 0.840910 + 0.541175i \(0.182020\pi\)
−0.840910 + 0.541175i \(0.817980\pi\)
\(734\) 2.14173 + 13.5223i 0.0790526 + 0.499119i
\(735\) 0 0
\(736\) 2.27263 + 2.27263i 0.0837703 + 0.0837703i
\(737\) 53.2952 1.96315
\(738\) 0 0
\(739\) 42.2408i 1.55385i −0.629591 0.776926i \(-0.716778\pi\)
0.629591 0.776926i \(-0.283222\pi\)
\(740\) 46.0591 14.9655i 1.69317 0.550143i
\(741\) 0 0
\(742\) 31.4485 4.98095i 1.15451 0.182856i
\(743\) −19.3835 −0.711112 −0.355556 0.934655i \(-0.615709\pi\)
−0.355556 + 0.934655i \(0.615709\pi\)
\(744\) 0 0
\(745\) 44.3746 1.62576
\(746\) 32.5420 5.15414i 1.19145 0.188707i
\(747\) 0 0
\(748\) 14.2895 + 43.9785i 0.522476 + 1.60801i
\(749\) 30.6002i 1.11811i
\(750\) 0 0
\(751\) 9.06886 0.330927 0.165464 0.986216i \(-0.447088\pi\)
0.165464 + 0.986216i \(0.447088\pi\)
\(752\) −12.8041 + 9.30273i −0.466918 + 0.339236i
\(753\) 0 0
\(754\) 0.594926 + 3.75621i 0.0216659 + 0.136793i
\(755\) 29.2967i 1.06622i
\(756\) 0 0
\(757\) 6.34174i 0.230495i 0.993337 + 0.115247i \(0.0367660\pi\)
−0.993337 + 0.115247i \(0.963234\pi\)
\(758\) −13.2455 + 2.09789i −0.481100 + 0.0761987i
\(759\) 0 0
\(760\) 19.5124 + 38.2953i 0.707790 + 1.38912i
\(761\) −19.1133 −0.692856 −0.346428 0.938077i \(-0.612605\pi\)
−0.346428 + 0.938077i \(0.612605\pi\)
\(762\) 0 0
\(763\) 15.2338i 0.551499i
\(764\) −27.3335 + 8.88120i −0.988892 + 0.321310i
\(765\) 0 0
\(766\) −1.25749 7.93950i −0.0454351 0.286866i
\(767\) 6.19868 0.223821
\(768\) 0 0
\(769\) −5.22795 −0.188525 −0.0942624 0.995547i \(-0.530049\pi\)
−0.0942624 + 0.995547i \(0.530049\pi\)
\(770\) 8.27636 + 52.2549i 0.298259 + 1.88314i
\(771\) 0 0
\(772\) 6.98804 2.27055i 0.251505 0.0817190i
\(773\) 32.5414i 1.17043i 0.810877 + 0.585216i \(0.198990\pi\)
−0.810877 + 0.585216i \(0.801010\pi\)
\(774\) 0 0
\(775\) −2.57889 −0.0926366
\(776\) −13.1636 25.8350i −0.472545 0.927423i
\(777\) 0 0
\(778\) 2.51203 0.397867i 0.0900607 0.0142642i
\(779\) 67.5884i 2.42161i
\(780\) 0 0
\(781\) 8.66418i 0.310029i
\(782\) 0.546915 + 3.45309i 0.0195576 + 0.123482i
\(783\) 0 0
\(784\) 2.60253 1.89085i 0.0929475 0.0675303i
\(785\) −33.9667 −1.21232
\(786\) 0 0
\(787\) 8.62409i 0.307416i 0.988116 + 0.153708i \(0.0491214\pi\)
−0.988116 + 0.153708i \(0.950879\pi\)
\(788\) 4.25480 + 13.0949i 0.151571 + 0.466488i
\(789\) 0 0
\(790\) −32.2953 + 5.11507i −1.14902 + 0.181986i
\(791\) 38.0864 1.35420
\(792\) 0 0
\(793\) −7.23607 −0.256960
\(794\) −6.44016 + 1.02002i −0.228553 + 0.0361992i
\(795\) 0 0
\(796\) −29.2833 + 9.51474i −1.03792 + 0.337241i
\(797\) 27.6486i 0.979365i −0.871901 0.489682i \(-0.837113\pi\)
0.871901 0.489682i \(-0.162887\pi\)
\(798\) 0 0
\(799\) −17.2161 −0.609062
\(800\) 5.40456 + 5.40456i 0.191080 + 0.191080i
\(801\) 0 0
\(802\) −4.30740 27.1959i −0.152100 0.960319i
\(803\) 27.4956i 0.970298i
\(804\) 0 0
\(805\) 4.00000i 0.140981i
\(806\) −2.66605 + 0.422260i −0.0939074 + 0.0148735i
\(807\) 0 0
\(808\) −7.60845 + 3.87670i −0.267664 + 0.136382i
\(809\) 24.4163 0.858431 0.429216 0.903202i \(-0.358790\pi\)
0.429216 + 0.903202i \(0.358790\pi\)
\(810\) 0 0
\(811\) 9.54312i 0.335104i −0.985863 0.167552i \(-0.946414\pi\)
0.985863 0.167552i \(-0.0535863\pi\)
\(812\) 4.64294 + 14.2895i 0.162935 + 0.501463i
\(813\) 0 0
\(814\) 11.2954 + 71.3164i 0.395904 + 2.49964i
\(815\) −24.6810 −0.864539
\(816\) 0 0
\(817\) 57.2063 2.00139
\(818\) −7.64789 48.2869i −0.267402 1.68831i
\(819\) 0 0
\(820\) −17.4589 53.7330i −0.609691 1.87644i
\(821\) 2.26876i 0.0791802i −0.999216 0.0395901i \(-0.987395\pi\)
0.999216 0.0395901i \(-0.0126052\pi\)
\(822\) 0 0
\(823\) −14.4047 −0.502115 −0.251058 0.967972i \(-0.580778\pi\)
−0.251058 + 0.967972i \(0.580778\pi\)
\(824\) 16.5894 + 32.5585i 0.577919 + 1.13423i
\(825\) 0 0
\(826\) 24.1879 3.83099i 0.841606 0.133297i
\(827\) 15.2993i 0.532010i −0.963972 0.266005i \(-0.914296\pi\)
0.963972 0.266005i \(-0.0857038\pi\)
\(828\) 0 0
\(829\) 21.5350i 0.747940i −0.927441 0.373970i \(-0.877996\pi\)
0.927441 0.373970i \(-0.122004\pi\)
\(830\) −2.57106 16.2331i −0.0892429 0.563457i
\(831\) 0 0
\(832\) 6.47214 + 4.70228i 0.224381 + 0.163022i
\(833\) 3.49930 0.121244
\(834\) 0 0
\(835\) 41.8481i 1.44821i
\(836\) −60.9440 + 19.8019i −2.10779 + 0.684864i
\(837\) 0 0
\(838\) 7.99300 1.26597i 0.276113 0.0437321i
\(839\) −47.6245 −1.64418 −0.822090 0.569358i \(-0.807192\pi\)
−0.822090 + 0.569358i \(0.807192\pi\)
\(840\) 0 0
\(841\) 21.7685 0.750636
\(842\) −43.1468 + 6.83379i −1.48694 + 0.235508i
\(843\) 0 0
\(844\) −0.970530 2.98698i −0.0334070 0.102816i
\(845\) 2.52015i 0.0866957i
\(846\) 0 0
\(847\) −48.1504 −1.65447
\(848\) 18.9487 + 26.0806i 0.650700 + 0.895611i
\(849\) 0 0
\(850\) 1.30062 + 8.21181i 0.0446110 + 0.281663i
\(851\) 5.45912i 0.187136i
\(852\) 0 0
\(853\) 15.3358i 0.525088i −0.964920 0.262544i \(-0.915438\pi\)
0.964920 0.262544i \(-0.0845616\pi\)
\(854\) −28.2360 + 4.47214i −0.966214 + 0.153033i
\(855\) 0 0
\(856\) 27.6049 14.0654i 0.943515 0.480745i
\(857\) −15.0828 −0.515218 −0.257609 0.966249i \(-0.582935\pi\)
−0.257609 + 0.966249i \(0.582935\pi\)
\(858\) 0 0
\(859\) 15.0249i 0.512642i 0.966592 + 0.256321i \(0.0825104\pi\)
−0.966592 + 0.256321i \(0.917490\pi\)
\(860\) 45.4791 14.7771i 1.55083 0.503894i
\(861\) 0 0
\(862\) 3.62176 + 22.8669i 0.123358 + 0.778850i
\(863\) 1.32919 0.0452460 0.0226230 0.999744i \(-0.492798\pi\)
0.0226230 + 0.999744i \(0.492798\pi\)
\(864\) 0 0
\(865\) 40.8210 1.38795
\(866\) 2.03018 + 12.8181i 0.0689884 + 0.435576i
\(867\) 0 0
\(868\) −10.1422 + 3.29541i −0.344250 + 0.111854i
\(869\) 48.7506i 1.65375i
\(870\) 0 0
\(871\) 10.0297 0.339842
\(872\) −13.7426 + 7.00219i −0.465382 + 0.237124i
\(873\) 0 0
\(874\) −4.78518 + 0.757897i −0.161861 + 0.0256363i
\(875\) 25.6890i 0.868448i
\(876\) 0 0
\(877\) 44.4244i 1.50011i 0.661378 + 0.750053i \(0.269972\pi\)
−0.661378 + 0.750053i \(0.730028\pi\)
\(878\) 4.23647 + 26.7480i 0.142974 + 0.902701i
\(879\) 0 0
\(880\) −43.3356 + 31.4852i −1.46084 + 1.06136i
\(881\) 36.5136 1.23017 0.615087 0.788459i \(-0.289121\pi\)
0.615087 + 0.788459i \(0.289121\pi\)
\(882\) 0 0
\(883\) 6.77808i 0.228101i 0.993475 + 0.114050i \(0.0363825\pi\)
−0.993475 + 0.114050i \(0.963617\pi\)
\(884\) 2.68915 + 8.27636i 0.0904460 + 0.278364i
\(885\) 0 0
\(886\) −8.23858 + 1.30486i −0.276780 + 0.0438377i
\(887\) 48.6502 1.63351 0.816756 0.576983i \(-0.195770\pi\)
0.816756 + 0.576983i \(0.195770\pi\)
\(888\) 0 0
\(889\) 54.3011 1.82120
\(890\) 40.1938 6.36607i 1.34730 0.213391i
\(891\) 0 0
\(892\) −52.6069 + 17.0930i −1.76141 + 0.572316i
\(893\) 23.8575i 0.798362i
\(894\) 0 0
\(895\) 3.09462 0.103442
\(896\) 28.1612 + 14.3488i 0.940799 + 0.479361i
\(897\) 0 0
\(898\) −4.82971 30.4936i −0.161169 1.01758i
\(899\) 5.13273i 0.171186i
\(900\) 0 0
\(901\) 35.0673i 1.16826i
\(902\) 83.1983 13.1773i 2.77020 0.438757i
\(903\) 0 0
\(904\) 17.5064 + 34.3582i 0.582254 + 1.14274i
\(905\) −17.6560 −0.586904
\(906\) 0 0
\(907\) 36.5196i 1.21261i −0.795230 0.606307i \(-0.792650\pi\)
0.795230 0.606307i \(-0.207350\pi\)
\(908\) −14.1798 43.6410i −0.470574 1.44828i
\(909\) 0 0
\(910\) 1.55754 + 9.83390i 0.0516318 + 0.325991i
\(911\) 23.9142 0.792312 0.396156 0.918183i \(-0.370344\pi\)
0.396156 + 0.918183i \(0.370344\pi\)
\(912\) 0 0
\(913\) 24.5042 0.810971
\(914\) −1.51377 9.55754i −0.0500709 0.316135i
\(915\) 0 0
\(916\) −14.5278 44.7118i −0.480010 1.47732i
\(917\) 35.5445i 1.17378i
\(918\) 0 0
\(919\) 18.4982 0.610198 0.305099 0.952321i \(-0.401310\pi\)
0.305099 + 0.952321i \(0.401310\pi\)
\(920\) −3.60845 + 1.83860i −0.118967 + 0.0606168i
\(921\) 0 0
\(922\) −31.1051 + 4.92656i −1.02439 + 0.162247i
\(923\) 1.63052i 0.0536692i
\(924\) 0 0
\(925\) 12.9824i 0.426858i
\(926\) −5.84097 36.8785i −0.191946 1.21190i
\(927\) 0 0
\(928\) −10.7566 + 10.7566i −0.353103 + 0.353103i
\(929\) −31.5521 −1.03519 −0.517595 0.855625i \(-0.673173\pi\)
−0.517595 + 0.855625i \(0.673173\pi\)
\(930\) 0 0
\(931\) 4.84922i 0.158927i
\(932\) 6.60856 2.14725i 0.216471 0.0703356i
\(933\) 0 0
\(934\) −15.7888 + 2.50070i −0.516625 + 0.0818254i
\(935\) −58.2680 −1.90557
\(936\) 0 0
\(937\) −5.54201 −0.181050 −0.0905248 0.995894i \(-0.528854\pi\)
−0.0905248 + 0.995894i \(0.528854\pi\)
\(938\) 39.1369 6.19868i 1.27787 0.202394i
\(939\) 0 0
\(940\) −6.16269 18.9668i −0.201005 0.618629i
\(941\) 9.62480i 0.313760i 0.987618 + 0.156880i \(0.0501435\pi\)
−0.987618 + 0.156880i \(0.949856\pi\)
\(942\) 0 0
\(943\) 6.36865 0.207392
\(944\) 14.5740 + 20.0593i 0.474342 + 0.652876i
\(945\) 0 0
\(946\) 11.1532 + 70.4184i 0.362621 + 2.28950i
\(947\) 31.1231i 1.01137i 0.862719 + 0.505683i \(0.168759\pi\)
−0.862719 + 0.505683i \(0.831241\pi\)
\(948\) 0 0
\(949\) 5.17442i 0.167969i
\(950\) −11.3797 + 1.80236i −0.369205 + 0.0584763i
\(951\) 0 0
\(952\) 15.6085 + 30.6333i 0.505873 + 0.992831i
\(953\) 17.0359 0.551847 0.275924 0.961180i \(-0.411016\pi\)
0.275924 + 0.961180i \(0.411016\pi\)
\(954\) 0 0
\(955\) 36.2147i 1.17188i
\(956\) −22.0303 + 7.15807i −0.712510 + 0.231509i
\(957\) 0 0
\(958\) −8.93828 56.4341i −0.288783 1.82330i
\(959\) 25.7865 0.832689
\(960\) 0 0
\(961\) −27.3570 −0.882482
\(962\) 2.12569 + 13.4211i 0.0685351 + 0.432714i
\(963\) 0 0
\(964\) −19.0322 + 6.18393i −0.612985 + 0.199171i
\(965\) 9.25860i 0.298045i
\(966\) 0 0
\(967\) 7.56565 0.243295 0.121647 0.992573i \(-0.461182\pi\)
0.121647 + 0.992573i \(0.461182\pi\)
\(968\) −22.1323 43.4371i −0.711360 1.39612i
\(969\) 0 0
\(970\) 36.0864 5.71552i 1.15866 0.183514i
\(971\) 25.0676i 0.804457i −0.915539 0.402228i \(-0.868236\pi\)
0.915539 0.402228i \(-0.131764\pi\)
\(972\) 0 0
\(973\) 32.8268i 1.05238i
\(974\) 8.05324 + 50.8462i 0.258042 + 1.62922i
\(975\) 0 0
\(976\) −17.0130 23.4164i −0.544573 0.749541i
\(977\) 37.9292 1.21346 0.606732 0.794907i \(-0.292480\pi\)
0.606732 + 0.794907i \(0.292480\pi\)
\(978\) 0 0
\(979\) 60.6735i 1.93913i
\(980\) 1.25261 + 3.85514i 0.0400132 + 0.123148i
\(981\) 0 0
\(982\) 5.25731 0.832676i 0.167768 0.0265718i
\(983\) 10.3543 0.330250 0.165125 0.986273i \(-0.447197\pi\)
0.165125 + 0.986273i \(0.447197\pi\)
\(984\) 0 0
\(985\) −17.3497 −0.552809
\(986\) −16.3438 + 2.58861i −0.520493 + 0.0824380i
\(987\) 0 0
\(988\) −11.4691 + 3.72654i −0.364881 + 0.118557i
\(989\) 5.39038i 0.171404i
\(990\) 0 0
\(991\) −45.2348 −1.43693 −0.718466 0.695562i \(-0.755155\pi\)
−0.718466 + 0.695562i \(0.755155\pi\)
\(992\) −7.63471 7.63471i −0.242402 0.242402i
\(993\) 0 0
\(994\) −1.00772 6.36247i −0.0319628 0.201805i
\(995\) 38.7981i 1.22998i
\(996\) 0 0
\(997\) 24.7402i 0.783529i −0.920066 0.391764i \(-0.871865\pi\)
0.920066 0.391764i \(-0.128135\pi\)
\(998\) 23.6546 3.74652i 0.748773 0.118594i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.g.d.469.5 8
3.2 odd 2 312.2.g.a.157.4 yes 8
4.3 odd 2 3744.2.g.d.1873.2 8
8.3 odd 2 3744.2.g.d.1873.7 8
8.5 even 2 inner 936.2.g.d.469.6 8
12.11 even 2 1248.2.g.a.625.8 8
24.5 odd 2 312.2.g.a.157.3 8
24.11 even 2 1248.2.g.a.625.1 8
48.5 odd 4 9984.2.a.y.1.1 4
48.11 even 4 9984.2.a.bh.1.1 4
48.29 odd 4 9984.2.a.bb.1.4 4
48.35 even 4 9984.2.a.s.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.g.a.157.3 8 24.5 odd 2
312.2.g.a.157.4 yes 8 3.2 odd 2
936.2.g.d.469.5 8 1.1 even 1 trivial
936.2.g.d.469.6 8 8.5 even 2 inner
1248.2.g.a.625.1 8 24.11 even 2
1248.2.g.a.625.8 8 12.11 even 2
3744.2.g.d.1873.2 8 4.3 odd 2
3744.2.g.d.1873.7 8 8.3 odd 2
9984.2.a.s.1.4 4 48.35 even 4
9984.2.a.y.1.1 4 48.5 odd 4
9984.2.a.bb.1.4 4 48.29 odd 4
9984.2.a.bh.1.1 4 48.11 even 4