Properties

Label 3744.2.g.d.1873.7
Level $3744$
Weight $2$
Character 3744.1873
Analytic conductor $29.896$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3744,2,Mod(1873,3744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3744.1873");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3744.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.8959905168\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1873.7
Root \(0.951057 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 3744.1873
Dual form 3744.2.g.d.1873.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.52015i q^{5} -2.79360 q^{7} -5.31375i q^{11} +1.00000i q^{13} +4.35114 q^{17} +6.02967i q^{19} +0.568158 q^{23} -1.35114 q^{25} +2.68915i q^{29} -1.90868 q^{31} -7.04029i q^{35} +9.60845i q^{37} -11.2093 q^{41} -9.48746i q^{43} +3.95669 q^{47} +0.804226 q^{49} -8.05934i q^{53} +13.3914 q^{55} +6.19868i q^{59} +7.23607i q^{61} -2.52015 q^{65} +10.0297i q^{67} -1.63052 q^{71} -5.17442 q^{73} +14.8445i q^{77} -9.17442 q^{79} +4.61147i q^{83} +10.9655i q^{85} -11.4182 q^{89} -2.79360i q^{91} -15.1957 q^{95} -10.2514 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{7} + 16 q^{17} - 8 q^{23} + 8 q^{25} + 4 q^{31} - 36 q^{41} + 24 q^{47} - 24 q^{49} + 40 q^{55} + 4 q^{65} + 16 q^{71} + 32 q^{73} - 60 q^{89} - 24 q^{95} - 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3744\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(2017\) \(2081\) \(2341\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.52015i 1.12704i 0.826101 + 0.563522i \(0.190554\pi\)
−0.826101 + 0.563522i \(0.809446\pi\)
\(6\) 0 0
\(7\) −2.79360 −1.05588 −0.527942 0.849281i \(-0.677036\pi\)
−0.527942 + 0.849281i \(0.677036\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 5.31375i − 1.60216i −0.598560 0.801078i \(-0.704260\pi\)
0.598560 0.801078i \(-0.295740\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.35114 1.05531 0.527653 0.849460i \(-0.323072\pi\)
0.527653 + 0.849460i \(0.323072\pi\)
\(18\) 0 0
\(19\) 6.02967i 1.38330i 0.722232 + 0.691651i \(0.243116\pi\)
−0.722232 + 0.691651i \(0.756884\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.568158 0.118469 0.0592346 0.998244i \(-0.481134\pi\)
0.0592346 + 0.998244i \(0.481134\pi\)
\(24\) 0 0
\(25\) −1.35114 −0.270228
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.68915i 0.499363i 0.968328 + 0.249682i \(0.0803260\pi\)
−0.968328 + 0.249682i \(0.919674\pi\)
\(30\) 0 0
\(31\) −1.90868 −0.342809 −0.171404 0.985201i \(-0.554830\pi\)
−0.171404 + 0.985201i \(0.554830\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 7.04029i − 1.19003i
\(36\) 0 0
\(37\) 9.60845i 1.57962i 0.613352 + 0.789810i \(0.289821\pi\)
−0.613352 + 0.789810i \(0.710179\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −11.2093 −1.75060 −0.875299 0.483582i \(-0.839336\pi\)
−0.875299 + 0.483582i \(0.839336\pi\)
\(42\) 0 0
\(43\) − 9.48746i − 1.44682i −0.690417 0.723412i \(-0.742573\pi\)
0.690417 0.723412i \(-0.257427\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.95669 0.577142 0.288571 0.957458i \(-0.406820\pi\)
0.288571 + 0.957458i \(0.406820\pi\)
\(48\) 0 0
\(49\) 0.804226 0.114889
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 8.05934i − 1.10704i −0.832837 0.553518i \(-0.813285\pi\)
0.832837 0.553518i \(-0.186715\pi\)
\(54\) 0 0
\(55\) 13.3914 1.80570
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.19868i 0.806999i 0.914980 + 0.403500i \(0.132206\pi\)
−0.914980 + 0.403500i \(0.867794\pi\)
\(60\) 0 0
\(61\) 7.23607i 0.926484i 0.886232 + 0.463242i \(0.153314\pi\)
−0.886232 + 0.463242i \(0.846686\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.52015 −0.312586
\(66\) 0 0
\(67\) 10.0297i 1.22532i 0.790347 + 0.612660i \(0.209900\pi\)
−0.790347 + 0.612660i \(0.790100\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.63052 −0.193507 −0.0967536 0.995308i \(-0.530846\pi\)
−0.0967536 + 0.995308i \(0.530846\pi\)
\(72\) 0 0
\(73\) −5.17442 −0.605620 −0.302810 0.953051i \(-0.597925\pi\)
−0.302810 + 0.953051i \(0.597925\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 14.8445i 1.69169i
\(78\) 0 0
\(79\) −9.17442 −1.03220 −0.516101 0.856528i \(-0.672617\pi\)
−0.516101 + 0.856528i \(0.672617\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.61147i 0.506175i 0.967443 + 0.253087i \(0.0814460\pi\)
−0.967443 + 0.253087i \(0.918554\pi\)
\(84\) 0 0
\(85\) 10.9655i 1.18938i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −11.4182 −1.21033 −0.605164 0.796101i \(-0.706892\pi\)
−0.605164 + 0.796101i \(0.706892\pi\)
\(90\) 0 0
\(91\) − 2.79360i − 0.292849i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −15.1957 −1.55904
\(96\) 0 0
\(97\) −10.2514 −1.04087 −0.520435 0.853901i \(-0.674230\pi\)
−0.520435 + 0.853901i \(0.674230\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 3.01905i − 0.300407i −0.988655 0.150203i \(-0.952007\pi\)
0.988655 0.150203i \(-0.0479929\pi\)
\(102\) 0 0
\(103\) −12.9193 −1.27298 −0.636488 0.771286i \(-0.719614\pi\)
−0.636488 + 0.771286i \(0.719614\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 10.9537i − 1.05893i −0.848331 0.529466i \(-0.822392\pi\)
0.848331 0.529466i \(-0.177608\pi\)
\(108\) 0 0
\(109\) − 5.45309i − 0.522311i −0.965297 0.261155i \(-0.915896\pi\)
0.965297 0.261155i \(-0.0841035\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.6334 1.28252 0.641262 0.767322i \(-0.278411\pi\)
0.641262 + 0.767322i \(0.278411\pi\)
\(114\) 0 0
\(115\) 1.43184i 0.133520i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.1554 −1.11428
\(120\) 0 0
\(121\) −17.2360 −1.56691
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.19566i 0.822485i
\(126\) 0 0
\(127\) −19.4377 −1.72481 −0.862406 0.506217i \(-0.831044\pi\)
−0.862406 + 0.506217i \(0.831044\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 12.7235i − 1.11166i −0.831296 0.555830i \(-0.812401\pi\)
0.831296 0.555830i \(-0.187599\pi\)
\(132\) 0 0
\(133\) − 16.8445i − 1.46061i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.23054 0.788619 0.394309 0.918978i \(-0.370984\pi\)
0.394309 + 0.918978i \(0.370984\pi\)
\(138\) 0 0
\(139\) 11.7507i 0.996681i 0.866982 + 0.498340i \(0.166057\pi\)
−0.866982 + 0.498340i \(0.833943\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.31375 0.444358
\(144\) 0 0
\(145\) −6.77706 −0.562804
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 17.6079i − 1.44250i −0.692675 0.721249i \(-0.743568\pi\)
0.692675 0.721249i \(-0.256432\pi\)
\(150\) 0 0
\(151\) 11.6250 0.946029 0.473014 0.881055i \(-0.343166\pi\)
0.473014 + 0.881055i \(0.343166\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 4.81015i − 0.386360i
\(156\) 0 0
\(157\) 13.4781i 1.07567i 0.843051 + 0.537833i \(0.180757\pi\)
−0.843051 + 0.537833i \(0.819243\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.58721 −0.125090
\(162\) 0 0
\(163\) − 9.79349i − 0.767085i −0.923523 0.383543i \(-0.874704\pi\)
0.923523 0.383543i \(-0.125296\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −16.6054 −1.28497 −0.642484 0.766299i \(-0.722096\pi\)
−0.642484 + 0.766299i \(0.722096\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 16.1979i − 1.23150i −0.787942 0.615750i \(-0.788853\pi\)
0.787942 0.615750i \(-0.211147\pi\)
\(174\) 0 0
\(175\) 3.77455 0.285329
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.22795i 0.0917816i 0.998946 + 0.0458908i \(0.0146126\pi\)
−0.998946 + 0.0458908i \(0.985387\pi\)
\(180\) 0 0
\(181\) 7.00592i 0.520746i 0.965508 + 0.260373i \(0.0838455\pi\)
−0.965508 + 0.260373i \(0.916154\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −24.2147 −1.78030
\(186\) 0 0
\(187\) − 23.1209i − 1.69077i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −14.3701 −1.03978 −0.519891 0.854232i \(-0.674028\pi\)
−0.519891 + 0.854232i \(0.674028\pi\)
\(192\) 0 0
\(193\) −3.67383 −0.264448 −0.132224 0.991220i \(-0.542212\pi\)
−0.132224 + 0.991220i \(0.542212\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.88442i 0.490494i 0.969461 + 0.245247i \(0.0788691\pi\)
−0.969461 + 0.245247i \(0.921131\pi\)
\(198\) 0 0
\(199\) −15.3952 −1.09133 −0.545667 0.838002i \(-0.683724\pi\)
−0.545667 + 0.838002i \(0.683724\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 7.51243i − 0.527269i
\(204\) 0 0
\(205\) − 28.2491i − 1.97300i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 32.0402 2.21627
\(210\) 0 0
\(211\) 1.57035i 0.108107i 0.998538 + 0.0540537i \(0.0172142\pi\)
−0.998538 + 0.0540537i \(0.982786\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 23.9098 1.63063
\(216\) 0 0
\(217\) 5.33209 0.361966
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.35114i 0.292689i
\(222\) 0 0
\(223\) −27.6571 −1.85205 −0.926027 0.377457i \(-0.876798\pi\)
−0.926027 + 0.377457i \(0.876798\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 22.9434i 1.52281i 0.648276 + 0.761405i \(0.275490\pi\)
−0.648276 + 0.761405i \(0.724510\pi\)
\(228\) 0 0
\(229\) − 23.5064i − 1.55335i −0.629904 0.776673i \(-0.716906\pi\)
0.629904 0.776673i \(-0.283094\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.47433 −0.227611 −0.113805 0.993503i \(-0.536304\pi\)
−0.113805 + 0.993503i \(0.536304\pi\)
\(234\) 0 0
\(235\) 9.97144i 0.650465i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.5820 −0.749177 −0.374589 0.927191i \(-0.622216\pi\)
−0.374589 + 0.927191i \(0.622216\pi\)
\(240\) 0 0
\(241\) 10.0058 0.644531 0.322265 0.946649i \(-0.395556\pi\)
0.322265 + 0.946649i \(0.395556\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.02677i 0.129485i
\(246\) 0 0
\(247\) −6.02967 −0.383659
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 11.3723i 0.717811i 0.933374 + 0.358906i \(0.116850\pi\)
−0.933374 + 0.358906i \(0.883150\pi\)
\(252\) 0 0
\(253\) − 3.01905i − 0.189806i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.3510 −0.708058 −0.354029 0.935235i \(-0.615189\pi\)
−0.354029 + 0.935235i \(0.615189\pi\)
\(258\) 0 0
\(259\) − 26.8422i − 1.66789i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.88712 0.239690 0.119845 0.992793i \(-0.461760\pi\)
0.119845 + 0.992793i \(0.461760\pi\)
\(264\) 0 0
\(265\) 20.3107 1.24768
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 25.2300i 1.53830i 0.639067 + 0.769151i \(0.279321\pi\)
−0.639067 + 0.769151i \(0.720679\pi\)
\(270\) 0 0
\(271\) 2.90649 0.176556 0.0882782 0.996096i \(-0.471864\pi\)
0.0882782 + 0.996096i \(0.471864\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.17963i 0.432948i
\(276\) 0 0
\(277\) − 4.26825i − 0.256454i −0.991745 0.128227i \(-0.959071\pi\)
0.991745 0.128227i \(-0.0409286\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.9900 1.13285 0.566424 0.824114i \(-0.308327\pi\)
0.566424 + 0.824114i \(0.308327\pi\)
\(282\) 0 0
\(283\) 13.1957i 0.784401i 0.919880 + 0.392200i \(0.128286\pi\)
−0.919880 + 0.392200i \(0.871714\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 31.3144 1.84843
\(288\) 0 0
\(289\) 1.93243 0.113672
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.0980i 0.706770i 0.935478 + 0.353385i \(0.114969\pi\)
−0.935478 + 0.353385i \(0.885031\pi\)
\(294\) 0 0
\(295\) −15.6216 −0.909524
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.568158i 0.0328574i
\(300\) 0 0
\(301\) 26.5042i 1.52768i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −18.2360 −1.04419
\(306\) 0 0
\(307\) 24.7863i 1.41463i 0.706900 + 0.707314i \(0.250093\pi\)
−0.706900 + 0.707314i \(0.749907\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.72956 −0.381598 −0.190799 0.981629i \(-0.561108\pi\)
−0.190799 + 0.981629i \(0.561108\pi\)
\(312\) 0 0
\(313\) 11.4956 0.649768 0.324884 0.945754i \(-0.394675\pi\)
0.324884 + 0.945754i \(0.394675\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 2.86756i − 0.161058i −0.996752 0.0805291i \(-0.974339\pi\)
0.996752 0.0805291i \(-0.0256610\pi\)
\(318\) 0 0
\(319\) 14.2895 0.800058
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 26.2360i 1.45981i
\(324\) 0 0
\(325\) − 1.35114i − 0.0749478i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −11.0534 −0.609395
\(330\) 0 0
\(331\) 1.44967i 0.0796811i 0.999206 + 0.0398405i \(0.0126850\pi\)
−0.999206 + 0.0398405i \(0.987315\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −25.2762 −1.38099
\(336\) 0 0
\(337\) −22.6774 −1.23532 −0.617660 0.786446i \(-0.711919\pi\)
−0.617660 + 0.786446i \(0.711919\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10.1422i 0.549233i
\(342\) 0 0
\(343\) 17.3085 0.934573
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 33.7652i 1.81261i 0.422621 + 0.906307i \(0.361110\pi\)
−0.422621 + 0.906307i \(0.638890\pi\)
\(348\) 0 0
\(349\) 6.34741i 0.339769i 0.985464 + 0.169885i \(0.0543395\pi\)
−0.985464 + 0.169885i \(0.945661\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −32.1856 −1.71307 −0.856534 0.516090i \(-0.827387\pi\)
−0.856534 + 0.516090i \(0.827387\pi\)
\(354\) 0 0
\(355\) − 4.10915i − 0.218091i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 22.9222 1.20979 0.604894 0.796306i \(-0.293216\pi\)
0.604894 + 0.796306i \(0.293216\pi\)
\(360\) 0 0
\(361\) −17.3570 −0.913524
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 13.0403i − 0.682560i
\(366\) 0 0
\(367\) 9.68093 0.505340 0.252670 0.967552i \(-0.418691\pi\)
0.252670 + 0.967552i \(0.418691\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 22.5146i 1.16890i
\(372\) 0 0
\(373\) − 23.2975i − 1.20630i −0.797628 0.603149i \(-0.793912\pi\)
0.797628 0.603149i \(-0.206088\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.68915 −0.138498
\(378\) 0 0
\(379\) − 9.48276i − 0.487097i −0.969889 0.243548i \(-0.921689\pi\)
0.969889 0.243548i \(-0.0783114\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5.68406 −0.290442 −0.145221 0.989399i \(-0.546389\pi\)
−0.145221 + 0.989399i \(0.546389\pi\)
\(384\) 0 0
\(385\) −37.4104 −1.90661
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 1.79842i − 0.0911834i −0.998960 0.0455917i \(-0.985483\pi\)
0.998960 0.0455917i \(-0.0145173\pi\)
\(390\) 0 0
\(391\) 2.47214 0.125021
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 23.1209i − 1.16334i
\(396\) 0 0
\(397\) 4.61064i 0.231402i 0.993284 + 0.115701i \(0.0369114\pi\)
−0.993284 + 0.115701i \(0.963089\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 19.4701 0.972290 0.486145 0.873878i \(-0.338403\pi\)
0.486145 + 0.873878i \(0.338403\pi\)
\(402\) 0 0
\(403\) − 1.90868i − 0.0950780i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 51.0569 2.53080
\(408\) 0 0
\(409\) 34.5696 1.70936 0.854678 0.519159i \(-0.173755\pi\)
0.854678 + 0.519159i \(0.173755\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 17.3167i − 0.852097i
\(414\) 0 0
\(415\) −11.6216 −0.570481
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 5.72235i 0.279555i 0.990183 + 0.139778i \(0.0446388\pi\)
−0.990183 + 0.139778i \(0.955361\pi\)
\(420\) 0 0
\(421\) 30.8897i 1.50547i 0.658322 + 0.752736i \(0.271266\pi\)
−0.658322 + 0.752736i \(0.728734\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.87901 −0.285174
\(426\) 0 0
\(427\) − 20.2147i − 0.978258i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.3709 0.788559 0.394279 0.918991i \(-0.370994\pi\)
0.394279 + 0.918991i \(0.370994\pi\)
\(432\) 0 0
\(433\) −9.17672 −0.441005 −0.220503 0.975386i \(-0.570770\pi\)
−0.220503 + 0.975386i \(0.570770\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.42581i 0.163879i
\(438\) 0 0
\(439\) 19.1494 0.913953 0.456977 0.889479i \(-0.348932\pi\)
0.456977 + 0.889479i \(0.348932\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 5.89817i − 0.280230i −0.990135 0.140115i \(-0.955253\pi\)
0.990135 0.140115i \(-0.0447473\pi\)
\(444\) 0 0
\(445\) − 28.7756i − 1.36409i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 21.8310 1.03027 0.515134 0.857110i \(-0.327742\pi\)
0.515134 + 0.857110i \(0.327742\pi\)
\(450\) 0 0
\(451\) 59.5634i 2.80473i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 7.04029 0.330054
\(456\) 0 0
\(457\) 6.84244 0.320076 0.160038 0.987111i \(-0.448838\pi\)
0.160038 + 0.987111i \(0.448838\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 22.2688i 1.03716i 0.855029 + 0.518580i \(0.173539\pi\)
−0.855029 + 0.518580i \(0.826461\pi\)
\(462\) 0 0
\(463\) −26.4021 −1.22701 −0.613504 0.789692i \(-0.710240\pi\)
−0.613504 + 0.789692i \(0.710240\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 11.3035i − 0.523065i −0.965195 0.261532i \(-0.915772\pi\)
0.965195 0.261532i \(-0.0842278\pi\)
\(468\) 0 0
\(469\) − 28.0189i − 1.29379i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −50.4140 −2.31804
\(474\) 0 0
\(475\) − 8.14694i − 0.373807i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −40.4023 −1.84603 −0.923015 0.384764i \(-0.874283\pi\)
−0.923015 + 0.384764i \(0.874283\pi\)
\(480\) 0 0
\(481\) −9.60845 −0.438108
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 25.8350i − 1.17311i
\(486\) 0 0
\(487\) 36.4018 1.64952 0.824762 0.565480i \(-0.191309\pi\)
0.824762 + 0.565480i \(0.191309\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.76382i 0.169859i 0.996387 + 0.0849294i \(0.0270665\pi\)
−0.996387 + 0.0849294i \(0.972934\pi\)
\(492\) 0 0
\(493\) 11.7009i 0.526981i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.55503 0.204321
\(498\) 0 0
\(499\) 16.9348i 0.758107i 0.925375 + 0.379053i \(0.123750\pi\)
−0.925375 + 0.379053i \(0.876250\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −12.9809 −0.578792 −0.289396 0.957209i \(-0.593454\pi\)
−0.289396 + 0.957209i \(0.593454\pi\)
\(504\) 0 0
\(505\) 7.60845 0.338572
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 13.4857i − 0.597741i −0.954294 0.298871i \(-0.903390\pi\)
0.954294 0.298871i \(-0.0966099\pi\)
\(510\) 0 0
\(511\) 14.4553 0.639464
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 32.5585i − 1.43470i
\(516\) 0 0
\(517\) − 21.0249i − 0.924672i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 35.4175 1.55167 0.775834 0.630937i \(-0.217330\pi\)
0.775834 + 0.630937i \(0.217330\pi\)
\(522\) 0 0
\(523\) 4.72122i 0.206445i 0.994658 + 0.103222i \(0.0329153\pi\)
−0.994658 + 0.103222i \(0.967085\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.30493 −0.361768
\(528\) 0 0
\(529\) −22.6772 −0.985965
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 11.2093i − 0.485529i
\(534\) 0 0
\(535\) 27.6049 1.19346
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 4.27346i − 0.184071i
\(540\) 0 0
\(541\) 26.4200i 1.13589i 0.823068 + 0.567943i \(0.192261\pi\)
−0.823068 + 0.567943i \(0.807739\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 13.7426 0.588667
\(546\) 0 0
\(547\) − 26.9939i − 1.15417i −0.816683 0.577087i \(-0.804189\pi\)
0.816683 0.577087i \(-0.195811\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −16.2147 −0.690770
\(552\) 0 0
\(553\) 25.6297 1.08989
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 24.7636i − 1.04927i −0.851329 0.524633i \(-0.824203\pi\)
0.851329 0.524633i \(-0.175797\pi\)
\(558\) 0 0
\(559\) 9.48746 0.401277
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.7426i 0.832050i 0.909353 + 0.416025i \(0.136577\pi\)
−0.909353 + 0.416025i \(0.863423\pi\)
\(564\) 0 0
\(565\) 34.3582i 1.44546i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.17684 −0.0912577 −0.0456289 0.998958i \(-0.514529\pi\)
−0.0456289 + 0.998958i \(0.514529\pi\)
\(570\) 0 0
\(571\) − 4.05934i − 0.169878i −0.996386 0.0849391i \(-0.972930\pi\)
0.996386 0.0849391i \(-0.0270696\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.767662 −0.0320137
\(576\) 0 0
\(577\) −27.5489 −1.14687 −0.573437 0.819249i \(-0.694390\pi\)
−0.573437 + 0.819249i \(0.694390\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 12.8826i − 0.534461i
\(582\) 0 0
\(583\) −42.8254 −1.77365
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.3268i 0.591329i 0.955292 + 0.295664i \(0.0955410\pi\)
−0.955292 + 0.295664i \(0.904459\pi\)
\(588\) 0 0
\(589\) − 11.5087i − 0.474208i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −27.6050 −1.13360 −0.566801 0.823855i \(-0.691819\pi\)
−0.566801 + 0.823855i \(0.691819\pi\)
\(594\) 0 0
\(595\) − 30.6333i − 1.25584i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −18.5204 −0.756724 −0.378362 0.925658i \(-0.623513\pi\)
−0.378362 + 0.925658i \(0.623513\pi\)
\(600\) 0 0
\(601\) 35.1640 1.43437 0.717185 0.696883i \(-0.245430\pi\)
0.717185 + 0.696883i \(0.245430\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 43.4371i − 1.76597i
\(606\) 0 0
\(607\) 35.5432 1.44265 0.721327 0.692594i \(-0.243532\pi\)
0.721327 + 0.692594i \(0.243532\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.95669i 0.160070i
\(612\) 0 0
\(613\) 37.3356i 1.50797i 0.656891 + 0.753985i \(0.271871\pi\)
−0.656891 + 0.753985i \(0.728129\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −20.1630 −0.811731 −0.405865 0.913933i \(-0.633030\pi\)
−0.405865 + 0.913933i \(0.633030\pi\)
\(618\) 0 0
\(619\) 15.1066i 0.607187i 0.952802 + 0.303594i \(0.0981865\pi\)
−0.952802 + 0.303594i \(0.901813\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 31.8979 1.27796
\(624\) 0 0
\(625\) −29.9301 −1.19720
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 41.8077i 1.66698i
\(630\) 0 0
\(631\) −0.390213 −0.0155341 −0.00776706 0.999970i \(-0.502472\pi\)
−0.00776706 + 0.999970i \(0.502472\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 48.9857i − 1.94394i
\(636\) 0 0
\(637\) 0.804226i 0.0318646i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 36.5386 1.44319 0.721593 0.692317i \(-0.243410\pi\)
0.721593 + 0.692317i \(0.243410\pi\)
\(642\) 0 0
\(643\) 29.1064i 1.14785i 0.818910 + 0.573923i \(0.194579\pi\)
−0.818910 + 0.573923i \(0.805421\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −15.1906 −0.597206 −0.298603 0.954377i \(-0.596521\pi\)
−0.298603 + 0.954377i \(0.596521\pi\)
\(648\) 0 0
\(649\) 32.9382 1.29294
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 15.9205i − 0.623016i −0.950243 0.311508i \(-0.899166\pi\)
0.950243 0.311508i \(-0.100834\pi\)
\(654\) 0 0
\(655\) 32.0652 1.25289
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.56597i 0.294728i 0.989082 + 0.147364i \(0.0470789\pi\)
−0.989082 + 0.147364i \(0.952921\pi\)
\(660\) 0 0
\(661\) − 32.0806i − 1.24779i −0.781508 0.623895i \(-0.785549\pi\)
0.781508 0.623895i \(-0.214451\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 42.4507 1.64617
\(666\) 0 0
\(667\) 1.52786i 0.0591591i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 38.4507 1.48437
\(672\) 0 0
\(673\) 19.0592 0.734679 0.367340 0.930087i \(-0.380269\pi\)
0.367340 + 0.930087i \(0.380269\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4.40095i 0.169142i 0.996417 + 0.0845711i \(0.0269520\pi\)
−0.996417 + 0.0845711i \(0.973048\pi\)
\(678\) 0 0
\(679\) 28.6383 1.09904
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 33.8071i − 1.29359i −0.762662 0.646797i \(-0.776108\pi\)
0.762662 0.646797i \(-0.223892\pi\)
\(684\) 0 0
\(685\) 23.2623i 0.888808i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8.05934 0.307037
\(690\) 0 0
\(691\) 12.4856i 0.474974i 0.971391 + 0.237487i \(0.0763237\pi\)
−0.971391 + 0.237487i \(0.923676\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −29.6135 −1.12330
\(696\) 0 0
\(697\) −48.7732 −1.84742
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 34.2016i − 1.29178i −0.763432 0.645888i \(-0.776487\pi\)
0.763432 0.645888i \(-0.223513\pi\)
\(702\) 0 0
\(703\) −57.9358 −2.18509
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8.43403i 0.317195i
\(708\) 0 0
\(709\) 41.6463i 1.56406i 0.623240 + 0.782030i \(0.285816\pi\)
−0.623240 + 0.782030i \(0.714184\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.08443 −0.0406122
\(714\) 0 0
\(715\) 13.3914i 0.500811i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 33.0401 1.23219 0.616093 0.787673i \(-0.288714\pi\)
0.616093 + 0.787673i \(0.288714\pi\)
\(720\) 0 0
\(721\) 36.0914 1.34411
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 3.63342i − 0.134942i
\(726\) 0 0
\(727\) 7.80551 0.289490 0.144745 0.989469i \(-0.453764\pi\)
0.144745 + 0.989469i \(0.453764\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 41.2813i − 1.52684i
\(732\) 0 0
\(733\) − 29.3035i − 1.08235i −0.840910 0.541175i \(-0.817980\pi\)
0.840910 0.541175i \(-0.182020\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 53.2952 1.96315
\(738\) 0 0
\(739\) − 42.2408i − 1.55385i −0.629591 0.776926i \(-0.716778\pi\)
0.629591 0.776926i \(-0.283222\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 19.3835 0.711112 0.355556 0.934655i \(-0.384291\pi\)
0.355556 + 0.934655i \(0.384291\pi\)
\(744\) 0 0
\(745\) 44.3746 1.62576
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 30.6002i 1.11811i
\(750\) 0 0
\(751\) −9.06886 −0.330927 −0.165464 0.986216i \(-0.552912\pi\)
−0.165464 + 0.986216i \(0.552912\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 29.2967i 1.06622i
\(756\) 0 0
\(757\) − 6.34174i − 0.230495i −0.993337 0.115247i \(-0.963234\pi\)
0.993337 0.115247i \(-0.0367660\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −19.1133 −0.692856 −0.346428 0.938077i \(-0.612605\pi\)
−0.346428 + 0.938077i \(0.612605\pi\)
\(762\) 0 0
\(763\) 15.2338i 0.551499i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.19868 −0.223821
\(768\) 0 0
\(769\) −5.22795 −0.188525 −0.0942624 0.995547i \(-0.530049\pi\)
−0.0942624 + 0.995547i \(0.530049\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 32.5414i − 1.17043i −0.810877 0.585216i \(-0.801010\pi\)
0.810877 0.585216i \(-0.198990\pi\)
\(774\) 0 0
\(775\) 2.57889 0.0926366
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 67.5884i − 2.42161i
\(780\) 0 0
\(781\) 8.66418i 0.310029i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −33.9667 −1.21232
\(786\) 0 0
\(787\) 8.62409i 0.307416i 0.988116 + 0.153708i \(0.0491214\pi\)
−0.988116 + 0.153708i \(0.950879\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −38.0864 −1.35420
\(792\) 0 0
\(793\) −7.23607 −0.256960
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27.6486i 0.979365i 0.871901 + 0.489682i \(0.162887\pi\)
−0.871901 + 0.489682i \(0.837113\pi\)
\(798\) 0 0
\(799\) 17.2161 0.609062
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 27.4956i 0.970298i
\(804\) 0 0
\(805\) − 4.00000i − 0.140981i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 24.4163 0.858431 0.429216 0.903202i \(-0.358790\pi\)
0.429216 + 0.903202i \(0.358790\pi\)
\(810\) 0 0
\(811\) − 9.54312i − 0.335104i −0.985863 0.167552i \(-0.946414\pi\)
0.985863 0.167552i \(-0.0535863\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 24.6810 0.864539
\(816\) 0 0
\(817\) 57.2063 2.00139
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.26876i 0.0791802i 0.999216 + 0.0395901i \(0.0126052\pi\)
−0.999216 + 0.0395901i \(0.987395\pi\)
\(822\) 0 0
\(823\) 14.4047 0.502115 0.251058 0.967972i \(-0.419222\pi\)
0.251058 + 0.967972i \(0.419222\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 15.2993i − 0.532010i −0.963972 0.266005i \(-0.914296\pi\)
0.963972 0.266005i \(-0.0857038\pi\)
\(828\) 0 0
\(829\) 21.5350i 0.747940i 0.927441 + 0.373970i \(0.122004\pi\)
−0.927441 + 0.373970i \(0.877996\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.49930 0.121244
\(834\) 0 0
\(835\) − 41.8481i − 1.44821i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 47.6245 1.64418 0.822090 0.569358i \(-0.192808\pi\)
0.822090 + 0.569358i \(0.192808\pi\)
\(840\) 0 0
\(841\) 21.7685 0.750636
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 2.52015i − 0.0866957i
\(846\) 0 0
\(847\) 48.1504 1.65447
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.45912i 0.187136i
\(852\) 0 0
\(853\) 15.3358i 0.525088i 0.964920 + 0.262544i \(0.0845616\pi\)
−0.964920 + 0.262544i \(0.915438\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −15.0828 −0.515218 −0.257609 0.966249i \(-0.582935\pi\)
−0.257609 + 0.966249i \(0.582935\pi\)
\(858\) 0 0
\(859\) 15.0249i 0.512642i 0.966592 + 0.256321i \(0.0825104\pi\)
−0.966592 + 0.256321i \(0.917490\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.32919 −0.0452460 −0.0226230 0.999744i \(-0.507202\pi\)
−0.0226230 + 0.999744i \(0.507202\pi\)
\(864\) 0 0
\(865\) 40.8210 1.38795
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 48.7506i 1.65375i
\(870\) 0 0
\(871\) −10.0297 −0.339842
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 25.6890i − 0.868448i
\(876\) 0 0
\(877\) − 44.4244i − 1.50011i −0.661378 0.750053i \(-0.730028\pi\)
0.661378 0.750053i \(-0.269972\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 36.5136 1.23017 0.615087 0.788459i \(-0.289121\pi\)
0.615087 + 0.788459i \(0.289121\pi\)
\(882\) 0 0
\(883\) 6.77808i 0.228101i 0.993475 + 0.114050i \(0.0363825\pi\)
−0.993475 + 0.114050i \(0.963617\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −48.6502 −1.63351 −0.816756 0.576983i \(-0.804230\pi\)
−0.816756 + 0.576983i \(0.804230\pi\)
\(888\) 0 0
\(889\) 54.3011 1.82120
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 23.8575i 0.798362i
\(894\) 0 0
\(895\) −3.09462 −0.103442
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 5.13273i − 0.171186i
\(900\) 0 0
\(901\) − 35.0673i − 1.16826i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −17.6560 −0.586904
\(906\) 0 0
\(907\) − 36.5196i − 1.21261i −0.795230 0.606307i \(-0.792650\pi\)
0.795230 0.606307i \(-0.207350\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −23.9142 −0.792312 −0.396156 0.918183i \(-0.629656\pi\)
−0.396156 + 0.918183i \(0.629656\pi\)
\(912\) 0 0
\(913\) 24.5042 0.810971
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 35.5445i 1.17378i
\(918\) 0 0
\(919\) −18.4982 −0.610198 −0.305099 0.952321i \(-0.598690\pi\)
−0.305099 + 0.952321i \(0.598690\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 1.63052i − 0.0536692i
\(924\) 0 0
\(925\) − 12.9824i − 0.426858i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −31.5521 −1.03519 −0.517595 0.855625i \(-0.673173\pi\)
−0.517595 + 0.855625i \(0.673173\pi\)
\(930\) 0 0
\(931\) 4.84922i 0.158927i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 58.2680 1.90557
\(936\) 0 0
\(937\) −5.54201 −0.181050 −0.0905248 0.995894i \(-0.528854\pi\)
−0.0905248 + 0.995894i \(0.528854\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 9.62480i − 0.313760i −0.987618 0.156880i \(-0.949856\pi\)
0.987618 0.156880i \(-0.0501435\pi\)
\(942\) 0 0
\(943\) −6.36865 −0.207392
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 31.1231i 1.01137i 0.862719 + 0.505683i \(0.168759\pi\)
−0.862719 + 0.505683i \(0.831241\pi\)
\(948\) 0 0
\(949\) − 5.17442i − 0.167969i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 17.0359 0.551847 0.275924 0.961180i \(-0.411016\pi\)
0.275924 + 0.961180i \(0.411016\pi\)
\(954\) 0 0
\(955\) − 36.2147i − 1.17188i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −25.7865 −0.832689
\(960\) 0 0
\(961\) −27.3570 −0.882482
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 9.25860i − 0.298045i
\(966\) 0 0
\(967\) −7.56565 −0.243295 −0.121647 0.992573i \(-0.538818\pi\)
−0.121647 + 0.992573i \(0.538818\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 25.0676i − 0.804457i −0.915539 0.402228i \(-0.868236\pi\)
0.915539 0.402228i \(-0.131764\pi\)
\(972\) 0 0
\(973\) − 32.8268i − 1.05238i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 37.9292 1.21346 0.606732 0.794907i \(-0.292480\pi\)
0.606732 + 0.794907i \(0.292480\pi\)
\(978\) 0 0
\(979\) 60.6735i 1.93913i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −10.3543 −0.330250 −0.165125 0.986273i \(-0.552803\pi\)
−0.165125 + 0.986273i \(0.552803\pi\)
\(984\) 0 0
\(985\) −17.3497 −0.552809
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 5.39038i − 0.171404i
\(990\) 0 0
\(991\) 45.2348 1.43693 0.718466 0.695562i \(-0.244845\pi\)
0.718466 + 0.695562i \(0.244845\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 38.7981i − 1.22998i
\(996\) 0 0
\(997\) 24.7402i 0.783529i 0.920066 + 0.391764i \(0.128135\pi\)
−0.920066 + 0.391764i \(0.871865\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3744.2.g.d.1873.7 8
3.2 odd 2 1248.2.g.a.625.1 8
4.3 odd 2 936.2.g.d.469.6 8
8.3 odd 2 936.2.g.d.469.5 8
8.5 even 2 inner 3744.2.g.d.1873.2 8
12.11 even 2 312.2.g.a.157.3 8
24.5 odd 2 1248.2.g.a.625.8 8
24.11 even 2 312.2.g.a.157.4 yes 8
48.5 odd 4 9984.2.a.s.1.4 4
48.11 even 4 9984.2.a.bb.1.4 4
48.29 odd 4 9984.2.a.bh.1.1 4
48.35 even 4 9984.2.a.y.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.g.a.157.3 8 12.11 even 2
312.2.g.a.157.4 yes 8 24.11 even 2
936.2.g.d.469.5 8 8.3 odd 2
936.2.g.d.469.6 8 4.3 odd 2
1248.2.g.a.625.1 8 3.2 odd 2
1248.2.g.a.625.8 8 24.5 odd 2
3744.2.g.d.1873.2 8 8.5 even 2 inner
3744.2.g.d.1873.7 8 1.1 even 1 trivial
9984.2.a.s.1.4 4 48.5 odd 4
9984.2.a.y.1.1 4 48.35 even 4
9984.2.a.bb.1.4 4 48.11 even 4
9984.2.a.bh.1.1 4 48.29 odd 4