L(s) = 1 | + (−1.69 + 0.356i)3-s + (0.348 + 0.603i)5-s + (−0.902 + 1.56i)7-s + (2.74 − 1.20i)9-s + (1.77 − 3.07i)11-s + (−0.5 − 0.866i)13-s + (−0.805 − 0.898i)15-s + 4.15·17-s − 3.92·19-s + (0.973 − 2.97i)21-s + (1.22 + 2.12i)23-s + (2.25 − 3.91i)25-s + (−4.22 + 3.02i)27-s + (−4.05 + 7.02i)29-s + (2.87 + 4.98i)31-s + ⋯ |
L(s) = 1 | + (−0.978 + 0.205i)3-s + (0.155 + 0.269i)5-s + (−0.341 + 0.590i)7-s + (0.915 − 0.402i)9-s + (0.535 − 0.927i)11-s + (−0.138 − 0.240i)13-s + (−0.207 − 0.231i)15-s + 1.00·17-s − 0.900·19-s + (0.212 − 0.648i)21-s + (0.255 + 0.442i)23-s + (0.451 − 0.782i)25-s + (−0.813 + 0.582i)27-s + (−0.752 + 1.30i)29-s + (0.517 + 0.895i)31-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(0.722−0.691i)Λ(2−s)
Λ(s)=(=(936s/2ΓC(s+1/2)L(s)(0.722−0.691i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
0.722−0.691i
|
Analytic conductor: |
7.47399 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(313,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :1/2), 0.722−0.691i)
|
Particular Values
L(1) |
≈ |
1.04822+0.420668i |
L(21) |
≈ |
1.04822+0.420668i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1.69−0.356i)T |
| 13 | 1+(0.5+0.866i)T |
good | 5 | 1+(−0.348−0.603i)T+(−2.5+4.33i)T2 |
| 7 | 1+(0.902−1.56i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−1.77+3.07i)T+(−5.5−9.52i)T2 |
| 17 | 1−4.15T+17T2 |
| 19 | 1+3.92T+19T2 |
| 23 | 1+(−1.22−2.12i)T+(−11.5+19.9i)T2 |
| 29 | 1+(4.05−7.02i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−2.87−4.98i)T+(−15.5+26.8i)T2 |
| 37 | 1−11.3T+37T2 |
| 41 | 1+(−2.04−3.54i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−4.75+8.22i)T+(−21.5−37.2i)T2 |
| 47 | 1+(6.09−10.5i)T+(−23.5−40.7i)T2 |
| 53 | 1−5.68T+53T2 |
| 59 | 1+(0.315+0.546i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−0.556+0.963i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−7.05−12.2i)T+(−33.5+58.0i)T2 |
| 71 | 1−4.85T+71T2 |
| 73 | 1+0.187T+73T2 |
| 79 | 1+(−1.82+3.16i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−1.34+2.33i)T+(−41.5−71.8i)T2 |
| 89 | 1+7.04T+89T2 |
| 97 | 1+(−6.95+12.0i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.27863838984935229718631217455, −9.430484251833167856007757804409, −8.635972928885454096783465340893, −7.49326303619932994454338050514, −6.44857832789033632043362846342, −5.93932989782143241448775666735, −5.08408856476994138792122808660, −3.90239534774249854337694150691, −2.81662922118837029766478487300, −1.06565837781319769034503606390,
0.78438853741718652349538564293, 2.13928582058603408450679116973, 3.93599019136112725440517902247, 4.62117949801900354330578885540, 5.70876394603759725952761055041, 6.51885605950446669672120373834, 7.26752562125098708601498896212, 8.081810373637495915193395314422, 9.551242282592104987436809337506, 9.824234844208505407658329357398