Properties

Label 936.2.q.d
Level $936$
Weight $2$
Character orbit 936.q
Analytic conductor $7.474$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(313,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.313");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.q (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 29 x^{10} - 90 x^{9} + 217 x^{8} - 394 x^{7} + 555 x^{6} - 598 x^{5} + 483 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{3} + ( - \beta_{11} + \beta_{2}) q^{5} + (\beta_{8} - \beta_{7} + \beta_{6} + \cdots - 1) q^{7} + ( - \beta_{8} - \beta_{6} - \beta_{5} + \cdots + 2) q^{9} + ( - \beta_{10} + \beta_{9} + \cdots - 2 \beta_{4}) q^{11}+ \cdots + (\beta_{11} - 4 \beta_{10} + \beta_{9} + \cdots - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} - q^{5} + 2 q^{7} + 2 q^{9} - q^{11} - 6 q^{13} - 2 q^{15} + 12 q^{17} - 14 q^{19} - 24 q^{21} + 19 q^{23} + 5 q^{25} - 7 q^{27} - 2 q^{29} + 8 q^{31} - 9 q^{33} + 2 q^{35} - 34 q^{37}+ \cdots - 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 6 x^{11} + 29 x^{10} - 90 x^{9} + 217 x^{8} - 394 x^{7} + 555 x^{6} - 598 x^{5} + 483 x^{4} + \cdots + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( - 3 \nu^{10} + 15 \nu^{9} - 71 \nu^{8} + 194 \nu^{7} - 433 \nu^{6} + 683 \nu^{5} - 832 \nu^{4} + \cdots - 24 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 5 \nu^{10} - 25 \nu^{9} + 119 \nu^{8} - 326 \nu^{7} + 735 \nu^{6} - 1169 \nu^{5} + 1455 \nu^{4} + \cdots + 58 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( - 6 \nu^{10} + 30 \nu^{9} - 142 \nu^{8} + 388 \nu^{7} - 867 \nu^{6} + 1369 \nu^{5} - 1678 \nu^{4} + \cdots - 59 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 50 \nu^{11} + 314 \nu^{10} - 1514 \nu^{9} + 4796 \nu^{8} - 11585 \nu^{7} + 21207 \nu^{6} + \cdots + 742 ) / 13 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 118 \nu^{11} - 610 \nu^{10} + 2896 \nu^{9} - 8119 \nu^{8} + 18407 \nu^{7} - 29963 \nu^{6} + 37814 \nu^{5} + \cdots - 149 ) / 13 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 131 \nu^{11} - 688 \nu^{10} + 3273 \nu^{9} - 9289 \nu^{8} + 21228 \nu^{7} - 35085 \nu^{6} + 45029 \nu^{5} + \cdots - 461 ) / 13 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 118 \nu^{11} + 688 \nu^{10} - 3286 \nu^{9} + 9965 \nu^{8} - 23451 \nu^{7} + 41234 \nu^{6} + \cdots + 942 ) / 13 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 135 \nu^{11} + 762 \nu^{10} - 3638 \nu^{9} + 10825 \nu^{8} - 25293 \nu^{7} + 43761 \nu^{6} + \cdots + 836 ) / 13 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 131 \nu^{11} + 753 \nu^{10} - 3598 \nu^{9} + 10823 \nu^{8} - 25414 \nu^{7} + 44393 \nu^{6} + \cdots + 981 ) / 13 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 196 \nu^{11} + 1078 \nu^{10} - 5132 \nu^{9} + 15009 \nu^{8} - 34722 \nu^{7} + 59031 \nu^{6} + \cdots + 968 ) / 13 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 193 \nu^{11} + 1094 \nu^{10} - 5232 \nu^{9} + 15625 \nu^{8} - 36649 \nu^{7} + 63756 \nu^{6} + \cdots + 1496 ) / 13 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{10} - \beta_{9} - 2\beta_{8} + \beta_{7} + \beta_{6} - \beta_{5} + 2\beta_{4} + \beta_{3} - \beta _1 + 2 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{10} - \beta_{9} - 2\beta_{8} + 4\beta_{7} + \beta_{6} + 2\beta_{5} + 2\beta_{4} + 4\beta_{3} - \beta _1 - 4 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2 \beta_{11} - 9 \beta_{10} + 6 \beta_{9} + 6 \beta_{8} + 3 \beta_{7} - 6 \beta_{6} + 6 \beta_{5} + \cdots - 6 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 4 \beta_{11} - 19 \beta_{10} + 7 \beta_{9} + 14 \beta_{8} - 22 \beta_{7} - 19 \beta_{6} - 14 \beta_{5} + \cdots + 28 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 11 \beta_{11} + 54 \beta_{10} - 51 \beta_{9} - 15 \beta_{8} - 54 \beta_{7} + 21 \beta_{6} - 51 \beta_{5} + \cdots + 57 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 43 \beta_{11} + 210 \beta_{10} - 102 \beta_{9} - 81 \beta_{8} + 90 \beta_{7} + 180 \beta_{6} + \cdots - 186 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 35 \beta_{11} - 205 \beta_{10} + 325 \beta_{9} + 29 \beta_{8} + 506 \beta_{7} + 53 \beta_{6} + \cdots - 614 ) / 3 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 350 \beta_{11} - 1845 \beta_{10} + 1134 \beta_{9} + 528 \beta_{8} - 102 \beta_{7} - 1332 \beta_{6} + \cdots + 891 ) / 3 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 84 \beta_{11} - 319 \beta_{10} - 1424 \beta_{9} + 209 \beta_{8} - 3892 \beta_{7} - 1861 \beta_{6} + \cdots + 5650 ) / 3 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 842 \beta_{11} + 4603 \beta_{10} - 3412 \beta_{9} - 1185 \beta_{8} - 1102 \beta_{7} + 2727 \beta_{6} + \cdots - 426 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 3098 \beta_{11} + 16465 \beta_{10} + 650 \beta_{9} - 4619 \beta_{8} + 25891 \beta_{7} + 22648 \beta_{6} + \cdots - 44647 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(-1 + \beta_{10}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
313.1
0.500000 2.70881i
0.500000 1.30710i
0.500000 + 1.70293i
0.500000 0.272034i
0.500000 + 0.667413i
0.500000 + 0.185550i
0.500000 + 2.70881i
0.500000 + 1.30710i
0.500000 1.70293i
0.500000 + 0.272034i
0.500000 0.667413i
0.500000 0.185550i
0 −1.71033 0.273454i 0 −0.558529 0.967401i 0 0.697927 1.20884i 0 2.85045 + 0.935391i 0
313.2 0 −1.69504 + 0.356160i 0 0.348249 + 0.603184i 0 −0.902727 + 1.56357i 0 2.74630 1.20741i 0
313.3 0 −0.793714 1.53949i 0 0.671409 + 1.16292i 0 2.29976 3.98331i 0 −1.74004 + 2.44382i 0
313.4 0 0.0876778 + 1.72983i 0 −0.391618 0.678302i 0 −0.823587 + 1.42649i 0 −2.98463 + 0.303335i 0
313.5 0 0.409577 1.68293i 0 −1.87385 3.24560i 0 0.175717 0.304350i 0 −2.66449 1.37858i 0
313.6 0 1.70182 0.322173i 0 1.30434 + 2.25918i 0 −0.447094 + 0.774390i 0 2.79241 1.09656i 0
625.1 0 −1.71033 + 0.273454i 0 −0.558529 + 0.967401i 0 0.697927 + 1.20884i 0 2.85045 0.935391i 0
625.2 0 −1.69504 0.356160i 0 0.348249 0.603184i 0 −0.902727 1.56357i 0 2.74630 + 1.20741i 0
625.3 0 −0.793714 + 1.53949i 0 0.671409 1.16292i 0 2.29976 + 3.98331i 0 −1.74004 2.44382i 0
625.4 0 0.0876778 1.72983i 0 −0.391618 + 0.678302i 0 −0.823587 1.42649i 0 −2.98463 0.303335i 0
625.5 0 0.409577 + 1.68293i 0 −1.87385 + 3.24560i 0 0.175717 + 0.304350i 0 −2.66449 + 1.37858i 0
625.6 0 1.70182 + 0.322173i 0 1.30434 2.25918i 0 −0.447094 0.774390i 0 2.79241 + 1.09656i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 313.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.2.q.d 12
3.b odd 2 1 2808.2.q.d 12
9.c even 3 1 inner 936.2.q.d 12
9.c even 3 1 8424.2.a.v 6
9.d odd 6 1 2808.2.q.d 12
9.d odd 6 1 8424.2.a.u 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
936.2.q.d 12 1.a even 1 1 trivial
936.2.q.d 12 9.c even 3 1 inner
2808.2.q.d 12 3.b odd 2 1
2808.2.q.d 12 9.d odd 6 1
8424.2.a.u 6 9.d odd 6 1
8424.2.a.v 6 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(936, [\chi])\):

\( T_{5}^{12} + T_{5}^{11} + 13 T_{5}^{10} - 10 T_{5}^{9} + 124 T_{5}^{8} - 29 T_{5}^{7} + 236 T_{5}^{6} + \cdots + 64 \) Copy content Toggle raw display
\( T_{7}^{12} - 2 T_{7}^{11} + 17 T_{7}^{10} + 28 T_{7}^{9} + 142 T_{7}^{8} + 122 T_{7}^{7} + 332 T_{7}^{6} + \cdots + 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} + 4 T^{11} + \cdots + 729 \) Copy content Toggle raw display
$5$ \( T^{12} + T^{11} + \cdots + 64 \) Copy content Toggle raw display
$7$ \( T^{12} - 2 T^{11} + \cdots + 36 \) Copy content Toggle raw display
$11$ \( T^{12} + T^{11} + \cdots + 66564 \) Copy content Toggle raw display
$13$ \( (T^{2} + T + 1)^{6} \) Copy content Toggle raw display
$17$ \( (T^{6} - 6 T^{5} + \cdots + 337)^{2} \) Copy content Toggle raw display
$19$ \( (T^{6} + 7 T^{5} + \cdots + 262)^{2} \) Copy content Toggle raw display
$23$ \( T^{12} - 19 T^{11} + \cdots + 729 \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 170929476 \) Copy content Toggle raw display
$31$ \( T^{12} - 8 T^{11} + \cdots + 186624 \) Copy content Toggle raw display
$37$ \( (T^{6} + 17 T^{5} + \cdots + 149902)^{2} \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 23920334244 \) Copy content Toggle raw display
$43$ \( T^{12} - 15 T^{11} + \cdots + 221841 \) Copy content Toggle raw display
$47$ \( T^{12} + 9 T^{11} + \cdots + 46594276 \) Copy content Toggle raw display
$53$ \( (T^{6} - 16 T^{5} + \cdots + 18057)^{2} \) Copy content Toggle raw display
$59$ \( T^{12} - 5 T^{11} + \cdots + 5776 \) Copy content Toggle raw display
$61$ \( T^{12} - 6 T^{11} + \cdots + 2640625 \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 5245815184 \) Copy content Toggle raw display
$71$ \( (T^{6} + 21 T^{5} + \cdots - 6912)^{2} \) Copy content Toggle raw display
$73$ \( (T^{6} + T^{5} - 257 T^{4} + \cdots - 4464)^{2} \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 145660761 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 2338883044 \) Copy content Toggle raw display
$89$ \( (T^{6} - 11 T^{5} + \cdots - 511458)^{2} \) Copy content Toggle raw display
$97$ \( T^{12} - 12 T^{11} + \cdots + 62916624 \) Copy content Toggle raw display
show more
show less