Properties

Label 936.2.q.d
Level 936936
Weight 22
Character orbit 936.q
Analytic conductor 7.4747.474
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(313,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.313");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 936=233213 936 = 2^{3} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 936.q (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.473997629197.47399762919
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x126x11+29x1090x9+217x8394x7+555x6598x5+483x4++3 x^{12} - 6 x^{11} + 29 x^{10} - 90 x^{9} + 217 x^{8} - 394 x^{7} + 555 x^{6} - 598 x^{5} + 483 x^{4} + \cdots + 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 32 3^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β5q3+(β11+β2)q5+(β8β7+β6+1)q7+(β8β6β5++2)q9+(β10+β9+2β4)q11++(β114β10+β9+2)q99+O(q100) q + \beta_{5} q^{3} + ( - \beta_{11} + \beta_{2}) q^{5} + (\beta_{8} - \beta_{7} + \beta_{6} + \cdots - 1) q^{7} + ( - \beta_{8} - \beta_{6} - \beta_{5} + \cdots + 2) q^{9} + ( - \beta_{10} + \beta_{9} + \cdots - 2 \beta_{4}) q^{11}+ \cdots + (\beta_{11} - 4 \beta_{10} + \beta_{9} + \cdots - 2) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q4q3q5+2q7+2q9q116q132q15+12q1714q1924q21+19q23+5q257q272q29+8q319q33+2q3534q37+39q99+O(q100) 12 q - 4 q^{3} - q^{5} + 2 q^{7} + 2 q^{9} - q^{11} - 6 q^{13} - 2 q^{15} + 12 q^{17} - 14 q^{19} - 24 q^{21} + 19 q^{23} + 5 q^{25} - 7 q^{27} - 2 q^{29} + 8 q^{31} - 9 q^{33} + 2 q^{35} - 34 q^{37}+ \cdots - 39 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x126x11+29x1090x9+217x8394x7+555x6598x5+483x4++3 x^{12} - 6 x^{11} + 29 x^{10} - 90 x^{9} + 217 x^{8} - 394 x^{7} + 555 x^{6} - 598 x^{5} + 483 x^{4} + \cdots + 3 : Copy content Toggle raw display

β1\beta_{1}== 3ν10+15ν971ν8+194ν7433ν6+683ν5832ν4+24 - 3 \nu^{10} + 15 \nu^{9} - 71 \nu^{8} + 194 \nu^{7} - 433 \nu^{6} + 683 \nu^{5} - 832 \nu^{4} + \cdots - 24 Copy content Toggle raw display
β2\beta_{2}== 5ν1025ν9+119ν8326ν7+735ν61169ν5+1455ν4++58 5 \nu^{10} - 25 \nu^{9} + 119 \nu^{8} - 326 \nu^{7} + 735 \nu^{6} - 1169 \nu^{5} + 1455 \nu^{4} + \cdots + 58 Copy content Toggle raw display
β3\beta_{3}== 6ν10+30ν9142ν8+388ν7867ν6+1369ν51678ν4+59 - 6 \nu^{10} + 30 \nu^{9} - 142 \nu^{8} + 388 \nu^{7} - 867 \nu^{6} + 1369 \nu^{5} - 1678 \nu^{4} + \cdots - 59 Copy content Toggle raw display
β4\beta_{4}== (50ν11+314ν101514ν9+4796ν811585ν7+21207ν6++742)/13 ( - 50 \nu^{11} + 314 \nu^{10} - 1514 \nu^{9} + 4796 \nu^{8} - 11585 \nu^{7} + 21207 \nu^{6} + \cdots + 742 ) / 13 Copy content Toggle raw display
β5\beta_{5}== (118ν11610ν10+2896ν98119ν8+18407ν729963ν6+37814ν5+149)/13 ( 118 \nu^{11} - 610 \nu^{10} + 2896 \nu^{9} - 8119 \nu^{8} + 18407 \nu^{7} - 29963 \nu^{6} + 37814 \nu^{5} + \cdots - 149 ) / 13 Copy content Toggle raw display
β6\beta_{6}== (131ν11688ν10+3273ν99289ν8+21228ν735085ν6+45029ν5+461)/13 ( 131 \nu^{11} - 688 \nu^{10} + 3273 \nu^{9} - 9289 \nu^{8} + 21228 \nu^{7} - 35085 \nu^{6} + 45029 \nu^{5} + \cdots - 461 ) / 13 Copy content Toggle raw display
β7\beta_{7}== (118ν11+688ν103286ν9+9965ν823451ν7+41234ν6++942)/13 ( - 118 \nu^{11} + 688 \nu^{10} - 3286 \nu^{9} + 9965 \nu^{8} - 23451 \nu^{7} + 41234 \nu^{6} + \cdots + 942 ) / 13 Copy content Toggle raw display
β8\beta_{8}== (135ν11+762ν103638ν9+10825ν825293ν7+43761ν6++836)/13 ( - 135 \nu^{11} + 762 \nu^{10} - 3638 \nu^{9} + 10825 \nu^{8} - 25293 \nu^{7} + 43761 \nu^{6} + \cdots + 836 ) / 13 Copy content Toggle raw display
β9\beta_{9}== (131ν11+753ν103598ν9+10823ν825414ν7+44393ν6++981)/13 ( - 131 \nu^{11} + 753 \nu^{10} - 3598 \nu^{9} + 10823 \nu^{8} - 25414 \nu^{7} + 44393 \nu^{6} + \cdots + 981 ) / 13 Copy content Toggle raw display
β10\beta_{10}== (196ν11+1078ν105132ν9+15009ν834722ν7+59031ν6++968)/13 ( - 196 \nu^{11} + 1078 \nu^{10} - 5132 \nu^{9} + 15009 \nu^{8} - 34722 \nu^{7} + 59031 \nu^{6} + \cdots + 968 ) / 13 Copy content Toggle raw display
β11\beta_{11}== (193ν11+1094ν105232ν9+15625ν836649ν7+63756ν6++1496)/13 ( - 193 \nu^{11} + 1094 \nu^{10} - 5232 \nu^{9} + 15625 \nu^{8} - 36649 \nu^{7} + 63756 \nu^{6} + \cdots + 1496 ) / 13 Copy content Toggle raw display
ν\nu== (β10β92β8+β7+β6β5+2β4+β3β1+2)/3 ( \beta_{10} - \beta_{9} - 2\beta_{8} + \beta_{7} + \beta_{6} - \beta_{5} + 2\beta_{4} + \beta_{3} - \beta _1 + 2 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (β10β92β8+4β7+β6+2β5+2β4+4β3β14)/3 ( \beta_{10} - \beta_{9} - 2\beta_{8} + 4\beta_{7} + \beta_{6} + 2\beta_{5} + 2\beta_{4} + 4\beta_{3} - \beta _1 - 4 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (2β119β10+6β9+6β8+3β76β6+6β5+6)/3 ( 2 \beta_{11} - 9 \beta_{10} + 6 \beta_{9} + 6 \beta_{8} + 3 \beta_{7} - 6 \beta_{6} + 6 \beta_{5} + \cdots - 6 ) / 3 Copy content Toggle raw display
ν4\nu^{4}== (4β1119β10+7β9+14β822β719β614β5++28)/3 ( 4 \beta_{11} - 19 \beta_{10} + 7 \beta_{9} + 14 \beta_{8} - 22 \beta_{7} - 19 \beta_{6} - 14 \beta_{5} + \cdots + 28 ) / 3 Copy content Toggle raw display
ν5\nu^{5}== (11β11+54β1051β915β854β7+21β651β5++57)/3 ( - 11 \beta_{11} + 54 \beta_{10} - 51 \beta_{9} - 15 \beta_{8} - 54 \beta_{7} + 21 \beta_{6} - 51 \beta_{5} + \cdots + 57 ) / 3 Copy content Toggle raw display
ν6\nu^{6}== (43β11+210β10102β981β8+90β7+180β6+186)/3 ( - 43 \beta_{11} + 210 \beta_{10} - 102 \beta_{9} - 81 \beta_{8} + 90 \beta_{7} + 180 \beta_{6} + \cdots - 186 ) / 3 Copy content Toggle raw display
ν7\nu^{7}== (35β11205β10+325β9+29β8+506β7+53β6+614)/3 ( 35 \beta_{11} - 205 \beta_{10} + 325 \beta_{9} + 29 \beta_{8} + 506 \beta_{7} + 53 \beta_{6} + \cdots - 614 ) / 3 Copy content Toggle raw display
ν8\nu^{8}== (350β111845β10+1134β9+528β8102β71332β6++891)/3 ( 350 \beta_{11} - 1845 \beta_{10} + 1134 \beta_{9} + 528 \beta_{8} - 102 \beta_{7} - 1332 \beta_{6} + \cdots + 891 ) / 3 Copy content Toggle raw display
ν9\nu^{9}== (84β11319β101424β9+209β83892β71861β6++5650)/3 ( 84 \beta_{11} - 319 \beta_{10} - 1424 \beta_{9} + 209 \beta_{8} - 3892 \beta_{7} - 1861 \beta_{6} + \cdots + 5650 ) / 3 Copy content Toggle raw display
ν10\nu^{10}== 842β11+4603β103412β91185β81102β7+2727β6+426 - 842 \beta_{11} + 4603 \beta_{10} - 3412 \beta_{9} - 1185 \beta_{8} - 1102 \beta_{7} + 2727 \beta_{6} + \cdots - 426 Copy content Toggle raw display
ν11\nu^{11}== (3098β11+16465β10+650β94619β8+25891β7+22648β6+44647)/3 ( - 3098 \beta_{11} + 16465 \beta_{10} + 650 \beta_{9} - 4619 \beta_{8} + 25891 \beta_{7} + 22648 \beta_{6} + \cdots - 44647 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/936Z)×\left(\mathbb{Z}/936\mathbb{Z}\right)^\times.

nn 145145 209209 469469 703703
χ(n)\chi(n) 11 1+β10-1 + \beta_{10} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
313.1
0.500000 2.70881i
0.500000 1.30710i
0.500000 + 1.70293i
0.500000 0.272034i
0.500000 + 0.667413i
0.500000 + 0.185550i
0.500000 + 2.70881i
0.500000 + 1.30710i
0.500000 1.70293i
0.500000 + 0.272034i
0.500000 0.667413i
0.500000 0.185550i
0 −1.71033 0.273454i 0 −0.558529 0.967401i 0 0.697927 1.20884i 0 2.85045 + 0.935391i 0
313.2 0 −1.69504 + 0.356160i 0 0.348249 + 0.603184i 0 −0.902727 + 1.56357i 0 2.74630 1.20741i 0
313.3 0 −0.793714 1.53949i 0 0.671409 + 1.16292i 0 2.29976 3.98331i 0 −1.74004 + 2.44382i 0
313.4 0 0.0876778 + 1.72983i 0 −0.391618 0.678302i 0 −0.823587 + 1.42649i 0 −2.98463 + 0.303335i 0
313.5 0 0.409577 1.68293i 0 −1.87385 3.24560i 0 0.175717 0.304350i 0 −2.66449 1.37858i 0
313.6 0 1.70182 0.322173i 0 1.30434 + 2.25918i 0 −0.447094 + 0.774390i 0 2.79241 1.09656i 0
625.1 0 −1.71033 + 0.273454i 0 −0.558529 + 0.967401i 0 0.697927 + 1.20884i 0 2.85045 0.935391i 0
625.2 0 −1.69504 0.356160i 0 0.348249 0.603184i 0 −0.902727 1.56357i 0 2.74630 + 1.20741i 0
625.3 0 −0.793714 + 1.53949i 0 0.671409 1.16292i 0 2.29976 + 3.98331i 0 −1.74004 2.44382i 0
625.4 0 0.0876778 1.72983i 0 −0.391618 + 0.678302i 0 −0.823587 1.42649i 0 −2.98463 0.303335i 0
625.5 0 0.409577 + 1.68293i 0 −1.87385 + 3.24560i 0 0.175717 + 0.304350i 0 −2.66449 + 1.37858i 0
625.6 0 1.70182 + 0.322173i 0 1.30434 2.25918i 0 −0.447094 0.774390i 0 2.79241 + 1.09656i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 313.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.2.q.d 12
3.b odd 2 1 2808.2.q.d 12
9.c even 3 1 inner 936.2.q.d 12
9.c even 3 1 8424.2.a.v 6
9.d odd 6 1 2808.2.q.d 12
9.d odd 6 1 8424.2.a.u 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
936.2.q.d 12 1.a even 1 1 trivial
936.2.q.d 12 9.c even 3 1 inner
2808.2.q.d 12 3.b odd 2 1
2808.2.q.d 12 9.d odd 6 1
8424.2.a.u 6 9.d odd 6 1
8424.2.a.v 6 9.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(936,[χ])S_{2}^{\mathrm{new}}(936, [\chi]):

T512+T511+13T51010T59+124T5829T57+236T56++64 T_{5}^{12} + T_{5}^{11} + 13 T_{5}^{10} - 10 T_{5}^{9} + 124 T_{5}^{8} - 29 T_{5}^{7} + 236 T_{5}^{6} + \cdots + 64 Copy content Toggle raw display
T7122T711+17T710+28T79+142T78+122T77+332T76++36 T_{7}^{12} - 2 T_{7}^{11} + 17 T_{7}^{10} + 28 T_{7}^{9} + 142 T_{7}^{8} + 122 T_{7}^{7} + 332 T_{7}^{6} + \cdots + 36 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12+4T11++729 T^{12} + 4 T^{11} + \cdots + 729 Copy content Toggle raw display
55 T12+T11++64 T^{12} + T^{11} + \cdots + 64 Copy content Toggle raw display
77 T122T11++36 T^{12} - 2 T^{11} + \cdots + 36 Copy content Toggle raw display
1111 T12+T11++66564 T^{12} + T^{11} + \cdots + 66564 Copy content Toggle raw display
1313 (T2+T+1)6 (T^{2} + T + 1)^{6} Copy content Toggle raw display
1717 (T66T5++337)2 (T^{6} - 6 T^{5} + \cdots + 337)^{2} Copy content Toggle raw display
1919 (T6+7T5++262)2 (T^{6} + 7 T^{5} + \cdots + 262)^{2} Copy content Toggle raw display
2323 T1219T11++729 T^{12} - 19 T^{11} + \cdots + 729 Copy content Toggle raw display
2929 T12++170929476 T^{12} + \cdots + 170929476 Copy content Toggle raw display
3131 T128T11++186624 T^{12} - 8 T^{11} + \cdots + 186624 Copy content Toggle raw display
3737 (T6+17T5++149902)2 (T^{6} + 17 T^{5} + \cdots + 149902)^{2} Copy content Toggle raw display
4141 T12++23920334244 T^{12} + \cdots + 23920334244 Copy content Toggle raw display
4343 T1215T11++221841 T^{12} - 15 T^{11} + \cdots + 221841 Copy content Toggle raw display
4747 T12+9T11++46594276 T^{12} + 9 T^{11} + \cdots + 46594276 Copy content Toggle raw display
5353 (T616T5++18057)2 (T^{6} - 16 T^{5} + \cdots + 18057)^{2} Copy content Toggle raw display
5959 T125T11++5776 T^{12} - 5 T^{11} + \cdots + 5776 Copy content Toggle raw display
6161 T126T11++2640625 T^{12} - 6 T^{11} + \cdots + 2640625 Copy content Toggle raw display
6767 T12++5245815184 T^{12} + \cdots + 5245815184 Copy content Toggle raw display
7171 (T6+21T5+6912)2 (T^{6} + 21 T^{5} + \cdots - 6912)^{2} Copy content Toggle raw display
7373 (T6+T5257T4+4464)2 (T^{6} + T^{5} - 257 T^{4} + \cdots - 4464)^{2} Copy content Toggle raw display
7979 T12++145660761 T^{12} + \cdots + 145660761 Copy content Toggle raw display
8383 T12++2338883044 T^{12} + \cdots + 2338883044 Copy content Toggle raw display
8989 (T611T5+511458)2 (T^{6} - 11 T^{5} + \cdots - 511458)^{2} Copy content Toggle raw display
9797 T1212T11++62916624 T^{12} - 12 T^{11} + \cdots + 62916624 Copy content Toggle raw display
show more
show less