L(s) = 1 | − 4·3-s − 5-s + 2·7-s + 9·9-s − 11-s − 6·13-s + 4·15-s + 12·17-s − 14·19-s − 8·21-s + 19·23-s + 18·25-s − 17·27-s − 2·29-s + 8·31-s + 4·33-s − 2·35-s − 34·37-s + 24·39-s − 2·41-s + 15·43-s − 9·45-s − 9·47-s + 29·49-s − 48·51-s + 32·53-s + 55-s + ⋯ |
L(s) = 1 | − 2.30·3-s − 0.447·5-s + 0.755·7-s + 3·9-s − 0.301·11-s − 1.66·13-s + 1.03·15-s + 2.91·17-s − 3.21·19-s − 1.74·21-s + 3.96·23-s + 18/5·25-s − 3.27·27-s − 0.371·29-s + 1.43·31-s + 0.696·33-s − 0.338·35-s − 5.58·37-s + 3.84·39-s − 0.312·41-s + 2.28·43-s − 1.34·45-s − 1.31·47-s + 29/7·49-s − 6.72·51-s + 4.39·53-s + 0.134·55-s + ⋯ |
Λ(s)=(=((236⋅324⋅1312)s/2ΓC(s)12L(s)Λ(2−s)
Λ(s)=(=((236⋅324⋅1312)s/2ΓC(s+1/2)12L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.741774387 |
L(21) |
≈ |
1.741774387 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+4T+7T2+p2T3−pT4−5p2T5−11p2T6−5p3T7−p3T8+p5T9+7p4T10+4p5T11+p6T12 |
| 13 | (1+T+T2)6 |
good | 5 | 1+T−17T2−6pT3+144T4+356T5−664T6−534pT7+896T8+2532pT9+12814T10−27063T11−103651T12−27063pT13+12814p2T14+2532p4T15+896p4T16−534p6T17−664p6T18+356p7T19+144p8T20−6p10T21−17p10T22+p11T23+p12T24 |
| 7 | 1−2T−25T2+12pT3+303T4−1467T5−1663T6+15712T7−3322T8−104066T9+22695pT10+305685T11−1527553T12+305685pT13+22695p3T14−104066p3T15−3322p4T16+15712p5T17−1663p6T18−1467p7T19+303p8T20+12p10T21−25p10T22−2p11T23+p12T24 |
| 11 | 1+T−28T2−145T3+356T4+3846T5+2192T6−60825T7−147607T8+615179T9+3066540T10−2917334T11−40184823T12−2917334pT13+3066540p2T14+615179p3T15−147607p4T16−60825p5T17+2192p6T18+3846p7T19+356p8T20−145p9T21−28p10T22+p11T23+p12T24 |
| 17 | (1−6T+72T2−235T3+1812T4−3435T5+30155T6−3435pT7+1812p2T8−235p3T9+72p4T10−6p5T11+p6T12)2 |
| 19 | (1+7T+109T2+552T3+4881T4+1000pT5+120760T6+1000p2T7+4881p2T8+552p3T9+109p4T10+7p5T11+p6T12)2 |
| 23 | 1−19T+85T2+76T3+4236T4−54722T5+61228T6+217791T7+9916640T8−48864976T9−72985812T10−431640815T11+8784786536T12−431640815pT13−72985812p2T14−48864976p3T15+9916640p4T16+217791p5T17+61228p6T18−54722p7T19+4236p8T20+76p9T21+85p10T22−19p11T23+p12T24 |
| 29 | 1+2T−71T2−50T3+2034T4−2945T5−38099T6+174165T7+729554T8−3060184T9+10301124T10+14837524T11−1050511345T12+14837524pT13+10301124p2T14−3060184p3T15+729554p4T16+174165p5T17−38099p6T18−2945p7T19+2034p8T20−50p9T21−71p10T22+2p11T23+p12T24 |
| 31 | 1−8T−77T2+468T3+5264T4−541pT5−212981T6+65633T7+6780536T8+8681576T9−150146070T10−219740916T11+3926987469T12−219740916pT13−150146070p2T14+8681576p3T15+6780536p4T16+65633p5T17−212981p6T18−541p8T19+5264p8T20+468p9T21−77p10T22−8p11T23+p12T24 |
| 37 | (1+17T+155T2+747T3+1666T4−4493T5−49898T6−4493pT7+1666p2T8+747p3T9+155p4T10+17p5T11+p6T12)2 |
| 41 | 1+2T−37T2+52T3−1099T4−14289T5+36959T6+342990T7−546304T8−12245894T9+83979345T10+483815711T11−4001736225T12+483815711pT13+83979345p2T14−12245894p3T15−546304p4T16+342990p5T17+36959p6T18−14289p7T19−1099p8T20+52p9T21−37p10T22+2p11T23+p12T24 |
| 43 | 1−15T−44T2+1605T3+436T4−96150T5+13421T6+2798805T7+15939163T8−37455615T9−1767812744T10−358014495T11+104035237766T12−358014495pT13−1767812744p2T14−37455615p3T15+15939163p4T16+2798805p5T17+13421p6T18−96150p7T19+436p8T20+1605p9T21−44p10T22−15p11T23+p12T24 |
| 47 | 1+9T−96T2−791T3+8358T4+63018T5−231163T6−2385648T7−5455962T8+94088395T9+1640985885T10−432734379T11−92112254279T12−432734379pT13+1640985885p2T14+94088395p3T15−5455962p4T16−2385648p5T17−231163p6T18+63018p7T19+8358p8T20−791p9T21−96p10T22+9p11T23+p12T24 |
| 53 | (1−16T+341T2−3597T3+44717T4−351571T5+3140075T6−351571pT7+44717p2T8−3597p3T9+341p4T10−16p5T11+p6T12)2 |
| 59 | 1−5T−219T2+2256T3+24682T4−382892T5−866756T6+40107018T7−98677820T8−2428428608T9+18619322966T10+64533742905T11−1426618140149T12+64533742905pT13+18619322966p2T14−2428428608p3T15−98677820p4T16+40107018p5T17−866756p6T18−382892p7T19+24682p8T20+2256p9T21−219p10T22−5p11T23+p12T24 |
| 61 | 1−6T−158T2−452T3+25558T4+100947T5−1054744T6−21449619T7−190172T8+1201558268T9+12652888861T10−51952082111T11−866504801022T12−51952082111pT13+12652888861p2T14+1201558268p3T15−190172p4T16−21449619p5T17−1054744p6T18+100947p7T19+25558p8T20−452p9T21−158p10T22−6p11T23+p12T24 |
| 67 | 1−8T−87T2+2086T3−7511T4−104423T5+2025145T6−9453174T7−79890902T8+1676113420T9−6418620129T10−56233364259T11+977846727627T12−56233364259pT13−6418620129p2T14+1676113420p3T15−79890902p4T16−9453174p5T17+2025145p6T18−104423p7T19−7511p8T20+2086p9T21−87p10T22−8p11T23+p12T24 |
| 71 | (1+21T+552T2+7365T3+108168T4+1029909T5+10503502T6+1029909pT7+108168p2T8+7365p3T9+552p4T10+21p5T11+p6T12)2 |
| 73 | (1+T+181T2+797T3+15046T4+126001T5+1041188T6+126001pT7+15046p2T8+797p3T9+181p4T10+p5T11+p6T12)2 |
| 79 | 1−34T+274T2+1008T3+24830T4−899081T5+3408808T6+17123755T7+654386474T8−7963303748T9−4308732765T10−202867350615T11+6976154776464T12−202867350615pT13−4308732765p2T14−7963303748p3T15+654386474p4T16+17123755p5T17+3408808p6T18−899081p7T19+24830p8T20+1008p9T21+274p10T22−34p11T23+p12T24 |
| 83 | 1−44T+709T2−6594T3+101865T4−1690345T5+14037545T6−106393506T7+1871755556T8−19587962148T9+104769987163T10−1328892312861T11+18520826492279T12−1328892312861pT13+104769987163p2T14−19587962148p3T15+1871755556p4T16−106393506p5T17+14037545p6T18−1690345p7T19+101865p8T20−6594p9T21+709p10T22−44p11T23+p12T24 |
| 89 | (1−11T+243T2−2974T3+41947T4−395342T5+4515440T6−395342pT7+41947p2T8−2974p3T9+243p4T10−11p5T11+p6T12)2 |
| 97 | 1−12T−350T2+3834T3+79315T4−724890T5−12688285T6+91701159T7+1583812456T8−7590111246T9−170176594430T10+298340892537T11+16744508198807T12+298340892537pT13−170176594430p2T14−7590111246p3T15+1583812456p4T16+91701159p5T17−12688285p6T18−724890p7T19+79315p8T20+3834p9T21−350p10T22−12p11T23+p12T24 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.33858123952618020793268587630, −3.19867428819935466716384318663, −2.94032196507401585094190844429, −2.93945740696852761018596005840, −2.81662922118837029766478487300, −2.77558778922723905447479531265, −2.67214527728549115875220848834, −2.44038252360750651613073582100, −2.35532120679122174166424388172, −2.34099311866090706441336826909, −2.24315646565439912957307637623, −2.13928582058603408450679116973, −1.91854730772275985281308253331, −1.80885900056585596825402851655, −1.72396290357897732497574708652, −1.61178769264283595394519327053, −1.53408320983449606364415441197, −1.14452602568307500266244192473, −1.06565837781319769034503606390, −0.926647455697108414610529628188, −0.78438853741718652349538564293, −0.77705436140159678214966653067, −0.75813660728091640594898891803, −0.51359444185754010523978858435, −0.12938571558753131887441652676,
0.12938571558753131887441652676, 0.51359444185754010523978858435, 0.75813660728091640594898891803, 0.77705436140159678214966653067, 0.78438853741718652349538564293, 0.926647455697108414610529628188, 1.06565837781319769034503606390, 1.14452602568307500266244192473, 1.53408320983449606364415441197, 1.61178769264283595394519327053, 1.72396290357897732497574708652, 1.80885900056585596825402851655, 1.91854730772275985281308253331, 2.13928582058603408450679116973, 2.24315646565439912957307637623, 2.34099311866090706441336826909, 2.35532120679122174166424388172, 2.44038252360750651613073582100, 2.67214527728549115875220848834, 2.77558778922723905447479531265, 2.81662922118837029766478487300, 2.93945740696852761018596005840, 2.94032196507401585094190844429, 3.19867428819935466716384318663, 3.33858123952618020793268587630
Plot not available for L-functions of degree greater than 10.