Properties

Label 936.2.q.d.625.5
Level $936$
Weight $2$
Character 936.625
Analytic conductor $7.474$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(313,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.313");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.q (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 29 x^{10} - 90 x^{9} + 217 x^{8} - 394 x^{7} + 555 x^{6} - 598 x^{5} + 483 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 625.5
Root \(0.500000 - 0.667413i\) of defining polynomial
Character \(\chi\) \(=\) 936.625
Dual form 936.2.q.d.313.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.409577 + 1.68293i) q^{3} +(-1.87385 + 3.24560i) q^{5} +(0.175717 + 0.304350i) q^{7} +(-2.66449 + 1.37858i) q^{9} +(1.64765 + 2.85382i) q^{11} +(-0.500000 + 0.866025i) q^{13} +(-6.22960 - 1.82423i) q^{15} +3.88461 q^{17} -4.45847 q^{19} +(-0.440230 + 0.420374i) q^{21} +(2.33425 - 4.04304i) q^{23} +(-4.52263 - 7.83342i) q^{25} +(-3.41136 - 3.91952i) q^{27} +(2.22269 + 3.84982i) q^{29} +(-0.391033 + 0.677289i) q^{31} +(-4.12793 + 3.94174i) q^{33} -1.31707 q^{35} -11.4322 q^{37} +(-1.66225 - 0.486760i) q^{39} +(3.42133 - 5.92592i) q^{41} +(4.77046 + 8.26268i) q^{43} +(0.518544 - 11.2311i) q^{45} +(1.03306 + 1.78931i) q^{47} +(3.43825 - 5.95522i) q^{49} +(1.59105 + 6.53751i) q^{51} -2.97755 q^{53} -12.3498 q^{55} +(-1.82609 - 7.50328i) q^{57} +(-0.470310 + 0.814600i) q^{59} +(-7.20988 - 12.4879i) q^{61} +(-0.887767 - 0.568700i) q^{63} +(-1.87385 - 3.24560i) q^{65} +(-2.12749 + 3.68491i) q^{67} +(7.76020 + 2.27244i) q^{69} -5.25904 q^{71} +7.09427 q^{73} +(11.3307 - 10.8196i) q^{75} +(-0.579040 + 1.00293i) q^{77} +(7.10680 + 12.3093i) q^{79} +(5.19905 - 7.34642i) q^{81} +(6.27717 + 10.8724i) q^{83} +(-7.27917 + 12.6079i) q^{85} +(-5.56861 + 5.31743i) q^{87} -5.56256 q^{89} -0.351433 q^{91} +(-1.29999 - 0.380678i) q^{93} +(8.35450 - 14.4704i) q^{95} +(0.853296 + 1.47795i) q^{97} +(-8.32437 - 5.33256i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} - q^{5} + 2 q^{7} + 2 q^{9} - q^{11} - 6 q^{13} - 2 q^{15} + 12 q^{17} - 14 q^{19} - 24 q^{21} + 19 q^{23} + 5 q^{25} - 7 q^{27} - 2 q^{29} + 8 q^{31} - 9 q^{33} + 2 q^{35} - 34 q^{37}+ \cdots - 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.409577 + 1.68293i 0.236469 + 0.971639i
\(4\) 0 0
\(5\) −1.87385 + 3.24560i −0.838011 + 1.45148i 0.0535439 + 0.998565i \(0.482948\pi\)
−0.891555 + 0.452912i \(0.850385\pi\)
\(6\) 0 0
\(7\) 0.175717 + 0.304350i 0.0664147 + 0.115034i 0.897321 0.441379i \(-0.145511\pi\)
−0.830906 + 0.556413i \(0.812177\pi\)
\(8\) 0 0
\(9\) −2.66449 + 1.37858i −0.888164 + 0.459526i
\(10\) 0 0
\(11\) 1.64765 + 2.85382i 0.496786 + 0.860458i 0.999993 0.00370733i \(-0.00118008\pi\)
−0.503207 + 0.864166i \(0.667847\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) 0 0
\(15\) −6.22960 1.82423i −1.60848 0.471014i
\(16\) 0 0
\(17\) 3.88461 0.942155 0.471078 0.882092i \(-0.343865\pi\)
0.471078 + 0.882092i \(0.343865\pi\)
\(18\) 0 0
\(19\) −4.45847 −1.02284 −0.511421 0.859330i \(-0.670881\pi\)
−0.511421 + 0.859330i \(0.670881\pi\)
\(20\) 0 0
\(21\) −0.440230 + 0.420374i −0.0960661 + 0.0917330i
\(22\) 0 0
\(23\) 2.33425 4.04304i 0.486725 0.843032i −0.513159 0.858294i \(-0.671525\pi\)
0.999884 + 0.0152616i \(0.00485811\pi\)
\(24\) 0 0
\(25\) −4.52263 7.83342i −0.904525 1.56668i
\(26\) 0 0
\(27\) −3.41136 3.91952i −0.656517 0.754311i
\(28\) 0 0
\(29\) 2.22269 + 3.84982i 0.412744 + 0.714894i 0.995189 0.0979767i \(-0.0312371\pi\)
−0.582445 + 0.812870i \(0.697904\pi\)
\(30\) 0 0
\(31\) −0.391033 + 0.677289i −0.0702316 + 0.121645i −0.899003 0.437943i \(-0.855707\pi\)
0.828771 + 0.559588i \(0.189041\pi\)
\(32\) 0 0
\(33\) −4.12793 + 3.94174i −0.718580 + 0.686169i
\(34\) 0 0
\(35\) −1.31707 −0.222625
\(36\) 0 0
\(37\) −11.4322 −1.87944 −0.939721 0.341943i \(-0.888915\pi\)
−0.939721 + 0.341943i \(0.888915\pi\)
\(38\) 0 0
\(39\) −1.66225 0.486760i −0.266173 0.0779439i
\(40\) 0 0
\(41\) 3.42133 5.92592i 0.534322 0.925473i −0.464874 0.885377i \(-0.653900\pi\)
0.999196 0.0400958i \(-0.0127663\pi\)
\(42\) 0 0
\(43\) 4.77046 + 8.26268i 0.727488 + 1.26005i 0.957942 + 0.286963i \(0.0926457\pi\)
−0.230453 + 0.973083i \(0.574021\pi\)
\(44\) 0 0
\(45\) 0.518544 11.2311i 0.0773000 1.67424i
\(46\) 0 0
\(47\) 1.03306 + 1.78931i 0.150687 + 0.260998i 0.931480 0.363792i \(-0.118518\pi\)
−0.780793 + 0.624790i \(0.785185\pi\)
\(48\) 0 0
\(49\) 3.43825 5.95522i 0.491178 0.850746i
\(50\) 0 0
\(51\) 1.59105 + 6.53751i 0.222791 + 0.915435i
\(52\) 0 0
\(53\) −2.97755 −0.408998 −0.204499 0.978867i \(-0.565557\pi\)
−0.204499 + 0.978867i \(0.565557\pi\)
\(54\) 0 0
\(55\) −12.3498 −1.66525
\(56\) 0 0
\(57\) −1.82609 7.50328i −0.241871 0.993833i
\(58\) 0 0
\(59\) −0.470310 + 0.814600i −0.0612291 + 0.106052i −0.895015 0.446036i \(-0.852835\pi\)
0.833786 + 0.552088i \(0.186169\pi\)
\(60\) 0 0
\(61\) −7.20988 12.4879i −0.923130 1.59891i −0.794541 0.607211i \(-0.792288\pi\)
−0.128590 0.991698i \(-0.541045\pi\)
\(62\) 0 0
\(63\) −0.887767 0.568700i −0.111848 0.0716495i
\(64\) 0 0
\(65\) −1.87385 3.24560i −0.232422 0.402568i
\(66\) 0 0
\(67\) −2.12749 + 3.68491i −0.259914 + 0.450184i −0.966219 0.257724i \(-0.917027\pi\)
0.706305 + 0.707908i \(0.250361\pi\)
\(68\) 0 0
\(69\) 7.76020 + 2.27244i 0.934218 + 0.273569i
\(70\) 0 0
\(71\) −5.25904 −0.624133 −0.312067 0.950060i \(-0.601021\pi\)
−0.312067 + 0.950060i \(0.601021\pi\)
\(72\) 0 0
\(73\) 7.09427 0.830322 0.415161 0.909748i \(-0.363725\pi\)
0.415161 + 0.909748i \(0.363725\pi\)
\(74\) 0 0
\(75\) 11.3307 10.8196i 1.30836 1.24935i
\(76\) 0 0
\(77\) −0.579040 + 1.00293i −0.0659878 + 0.114294i
\(78\) 0 0
\(79\) 7.10680 + 12.3093i 0.799577 + 1.38491i 0.919892 + 0.392172i \(0.128276\pi\)
−0.120315 + 0.992736i \(0.538390\pi\)
\(80\) 0 0
\(81\) 5.19905 7.34642i 0.577672 0.816269i
\(82\) 0 0
\(83\) 6.27717 + 10.8724i 0.689009 + 1.19340i 0.972159 + 0.234323i \(0.0752874\pi\)
−0.283149 + 0.959076i \(0.591379\pi\)
\(84\) 0 0
\(85\) −7.27917 + 12.6079i −0.789537 + 1.36752i
\(86\) 0 0
\(87\) −5.56861 + 5.31743i −0.597017 + 0.570089i
\(88\) 0 0
\(89\) −5.56256 −0.589631 −0.294815 0.955554i \(-0.595258\pi\)
−0.294815 + 0.955554i \(0.595258\pi\)
\(90\) 0 0
\(91\) −0.351433 −0.0368402
\(92\) 0 0
\(93\) −1.29999 0.380678i −0.134802 0.0394745i
\(94\) 0 0
\(95\) 8.35450 14.4704i 0.857153 1.48463i
\(96\) 0 0
\(97\) 0.853296 + 1.47795i 0.0866391 + 0.150063i 0.906088 0.423088i \(-0.139054\pi\)
−0.819449 + 0.573152i \(0.805721\pi\)
\(98\) 0 0
\(99\) −8.32437 5.33256i −0.836630 0.535943i
\(100\) 0 0
\(101\) 1.31437 + 2.27655i 0.130784 + 0.226525i 0.923979 0.382443i \(-0.124917\pi\)
−0.793195 + 0.608968i \(0.791584\pi\)
\(102\) 0 0
\(103\) −6.78217 + 11.7471i −0.668267 + 1.15747i 0.310121 + 0.950697i \(0.399630\pi\)
−0.978388 + 0.206776i \(0.933703\pi\)
\(104\) 0 0
\(105\) −0.539441 2.21653i −0.0526440 0.216311i
\(106\) 0 0
\(107\) 3.58218 0.346302 0.173151 0.984895i \(-0.444605\pi\)
0.173151 + 0.984895i \(0.444605\pi\)
\(108\) 0 0
\(109\) 11.1068 1.06384 0.531918 0.846796i \(-0.321472\pi\)
0.531918 + 0.846796i \(0.321472\pi\)
\(110\) 0 0
\(111\) −4.68237 19.2396i −0.444431 1.82614i
\(112\) 0 0
\(113\) −1.03347 + 1.79003i −0.0972210 + 0.168392i −0.910533 0.413436i \(-0.864329\pi\)
0.813312 + 0.581827i \(0.197662\pi\)
\(114\) 0 0
\(115\) 8.74807 + 15.1521i 0.815762 + 1.41294i
\(116\) 0 0
\(117\) 0.138363 2.99681i 0.0127917 0.277055i
\(118\) 0 0
\(119\) 0.682590 + 1.18228i 0.0625730 + 0.108380i
\(120\) 0 0
\(121\) 0.0704825 0.122079i 0.00640750 0.0110981i
\(122\) 0 0
\(123\) 11.3742 + 3.33073i 1.02558 + 0.300322i
\(124\) 0 0
\(125\) 15.1604 1.35599
\(126\) 0 0
\(127\) −15.0773 −1.33789 −0.668945 0.743312i \(-0.733254\pi\)
−0.668945 + 0.743312i \(0.733254\pi\)
\(128\) 0 0
\(129\) −11.9516 + 11.4125i −1.05228 + 1.00482i
\(130\) 0 0
\(131\) −6.82003 + 11.8126i −0.595869 + 1.03207i 0.397555 + 0.917578i \(0.369859\pi\)
−0.993424 + 0.114496i \(0.963475\pi\)
\(132\) 0 0
\(133\) −0.783427 1.35694i −0.0679317 0.117661i
\(134\) 0 0
\(135\) 19.1136 3.72734i 1.64503 0.320799i
\(136\) 0 0
\(137\) 3.11762 + 5.39988i 0.266356 + 0.461343i 0.967918 0.251266i \(-0.0808468\pi\)
−0.701562 + 0.712609i \(0.747513\pi\)
\(138\) 0 0
\(139\) −0.835988 + 1.44797i −0.0709076 + 0.122816i −0.899299 0.437334i \(-0.855923\pi\)
0.828392 + 0.560149i \(0.189256\pi\)
\(140\) 0 0
\(141\) −2.58817 + 2.47143i −0.217963 + 0.208132i
\(142\) 0 0
\(143\) −3.29530 −0.275567
\(144\) 0 0
\(145\) −16.6600 −1.38354
\(146\) 0 0
\(147\) 11.4304 + 3.34720i 0.942766 + 0.276072i
\(148\) 0 0
\(149\) −8.29479 + 14.3670i −0.679536 + 1.17699i 0.295585 + 0.955316i \(0.404485\pi\)
−0.975121 + 0.221674i \(0.928848\pi\)
\(150\) 0 0
\(151\) 7.79995 + 13.5099i 0.634751 + 1.09942i 0.986568 + 0.163352i \(0.0522305\pi\)
−0.351817 + 0.936069i \(0.614436\pi\)
\(152\) 0 0
\(153\) −10.3505 + 5.35523i −0.836789 + 0.432945i
\(154\) 0 0
\(155\) −1.46547 2.53828i −0.117710 0.203879i
\(156\) 0 0
\(157\) 8.17650 14.1621i 0.652556 1.13026i −0.329945 0.944000i \(-0.607030\pi\)
0.982501 0.186259i \(-0.0596365\pi\)
\(158\) 0 0
\(159\) −1.21954 5.01101i −0.0967156 0.397399i
\(160\) 0 0
\(161\) 1.64067 0.129303
\(162\) 0 0
\(163\) 5.60740 0.439206 0.219603 0.975589i \(-0.429524\pi\)
0.219603 + 0.975589i \(0.429524\pi\)
\(164\) 0 0
\(165\) −5.05820 20.7838i −0.393780 1.61802i
\(166\) 0 0
\(167\) 2.36444 4.09532i 0.182966 0.316906i −0.759924 0.650012i \(-0.774764\pi\)
0.942889 + 0.333107i \(0.108097\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 0 0
\(171\) 11.8796 6.14634i 0.908452 0.470022i
\(172\) 0 0
\(173\) 8.39746 + 14.5448i 0.638447 + 1.10582i 0.985774 + 0.168078i \(0.0537562\pi\)
−0.347327 + 0.937744i \(0.612910\pi\)
\(174\) 0 0
\(175\) 1.58940 2.75293i 0.120148 0.208102i
\(176\) 0 0
\(177\) −1.56354 0.457856i −0.117523 0.0344145i
\(178\) 0 0
\(179\) 11.7878 0.881062 0.440531 0.897737i \(-0.354790\pi\)
0.440531 + 0.897737i \(0.354790\pi\)
\(180\) 0 0
\(181\) −26.0931 −1.93948 −0.969742 0.244132i \(-0.921497\pi\)
−0.969742 + 0.244132i \(0.921497\pi\)
\(182\) 0 0
\(183\) 18.0632 17.2485i 1.33527 1.27504i
\(184\) 0 0
\(185\) 21.4222 37.1044i 1.57499 2.72797i
\(186\) 0 0
\(187\) 6.40048 + 11.0860i 0.468050 + 0.810686i
\(188\) 0 0
\(189\) 0.593472 1.72697i 0.0431688 0.125619i
\(190\) 0 0
\(191\) 7.91958 + 13.7171i 0.573041 + 0.992535i 0.996251 + 0.0865042i \(0.0275696\pi\)
−0.423211 + 0.906031i \(0.639097\pi\)
\(192\) 0 0
\(193\) −5.53722 + 9.59074i −0.398578 + 0.690357i −0.993551 0.113389i \(-0.963829\pi\)
0.594973 + 0.803746i \(0.297163\pi\)
\(194\) 0 0
\(195\) 4.69463 4.48288i 0.336189 0.321026i
\(196\) 0 0
\(197\) 8.36629 0.596073 0.298037 0.954554i \(-0.403668\pi\)
0.298037 + 0.954554i \(0.403668\pi\)
\(198\) 0 0
\(199\) 2.63356 0.186688 0.0933441 0.995634i \(-0.470244\pi\)
0.0933441 + 0.995634i \(0.470244\pi\)
\(200\) 0 0
\(201\) −7.07281 2.07115i −0.498878 0.146088i
\(202\) 0 0
\(203\) −0.781129 + 1.35296i −0.0548245 + 0.0949589i
\(204\) 0 0
\(205\) 12.8221 + 22.2086i 0.895535 + 1.55111i
\(206\) 0 0
\(207\) −0.645949 + 13.9906i −0.0448966 + 0.972414i
\(208\) 0 0
\(209\) −7.34600 12.7236i −0.508134 0.880113i
\(210\) 0 0
\(211\) 12.1778 21.0925i 0.838351 1.45207i −0.0529214 0.998599i \(-0.516853\pi\)
0.891273 0.453468i \(-0.149813\pi\)
\(212\) 0 0
\(213\) −2.15398 8.85059i −0.147589 0.606432i
\(214\) 0 0
\(215\) −35.7565 −2.43857
\(216\) 0 0
\(217\) −0.274844 −0.0186576
\(218\) 0 0
\(219\) 2.90565 + 11.9392i 0.196346 + 0.806773i
\(220\) 0 0
\(221\) −1.94230 + 3.36417i −0.130653 + 0.226298i
\(222\) 0 0
\(223\) −12.8601 22.2744i −0.861178 1.49160i −0.870793 0.491651i \(-0.836394\pi\)
0.00961429 0.999954i \(-0.496940\pi\)
\(224\) 0 0
\(225\) 22.8495 + 14.6373i 1.52330 + 0.975820i
\(226\) 0 0
\(227\) −11.1762 19.3577i −0.741788 1.28481i −0.951681 0.307090i \(-0.900645\pi\)
0.209893 0.977724i \(-0.432689\pi\)
\(228\) 0 0
\(229\) −2.42023 + 4.19196i −0.159933 + 0.277012i −0.934844 0.355058i \(-0.884461\pi\)
0.774911 + 0.632070i \(0.217795\pi\)
\(230\) 0 0
\(231\) −1.92502 0.563707i −0.126657 0.0370892i
\(232\) 0 0
\(233\) 25.0840 1.64331 0.821655 0.569986i \(-0.193051\pi\)
0.821655 + 0.569986i \(0.193051\pi\)
\(234\) 0 0
\(235\) −7.74321 −0.505111
\(236\) 0 0
\(237\) −17.8049 + 17.0018i −1.15656 + 1.10439i
\(238\) 0 0
\(239\) −12.3092 + 21.3202i −0.796217 + 1.37909i 0.125846 + 0.992050i \(0.459836\pi\)
−0.922063 + 0.387039i \(0.873498\pi\)
\(240\) 0 0
\(241\) 10.0909 + 17.4780i 0.650015 + 1.12586i 0.983119 + 0.182968i \(0.0585706\pi\)
−0.333104 + 0.942890i \(0.608096\pi\)
\(242\) 0 0
\(243\) 14.4929 + 5.74070i 0.929721 + 0.368266i
\(244\) 0 0
\(245\) 12.8855 + 22.3184i 0.823226 + 1.42587i
\(246\) 0 0
\(247\) 2.22923 3.86114i 0.141843 0.245679i
\(248\) 0 0
\(249\) −15.7265 + 15.0171i −0.996623 + 0.951671i
\(250\) 0 0
\(251\) 26.3117 1.66078 0.830391 0.557181i \(-0.188117\pi\)
0.830391 + 0.557181i \(0.188117\pi\)
\(252\) 0 0
\(253\) 15.3841 0.967192
\(254\) 0 0
\(255\) −24.1996 7.08641i −1.51543 0.443768i
\(256\) 0 0
\(257\) 4.52109 7.83076i 0.282018 0.488470i −0.689864 0.723939i \(-0.742330\pi\)
0.971882 + 0.235470i \(0.0756629\pi\)
\(258\) 0 0
\(259\) −2.00883 3.47939i −0.124823 0.216199i
\(260\) 0 0
\(261\) −11.2296 7.19366i −0.695097 0.445276i
\(262\) 0 0
\(263\) 0.953008 + 1.65066i 0.0587650 + 0.101784i 0.893911 0.448244i \(-0.147950\pi\)
−0.835146 + 0.550028i \(0.814617\pi\)
\(264\) 0 0
\(265\) 5.57949 9.66396i 0.342745 0.593652i
\(266\) 0 0
\(267\) −2.27830 9.36139i −0.139430 0.572908i
\(268\) 0 0
\(269\) 13.5293 0.824896 0.412448 0.910981i \(-0.364674\pi\)
0.412448 + 0.910981i \(0.364674\pi\)
\(270\) 0 0
\(271\) 8.66113 0.526126 0.263063 0.964779i \(-0.415267\pi\)
0.263063 + 0.964779i \(0.415267\pi\)
\(272\) 0 0
\(273\) −0.143939 0.591437i −0.00871159 0.0357954i
\(274\) 0 0
\(275\) 14.9034 25.8135i 0.898711 1.55661i
\(276\) 0 0
\(277\) −12.7451 22.0752i −0.765779 1.32637i −0.939834 0.341633i \(-0.889020\pi\)
0.174054 0.984736i \(-0.444313\pi\)
\(278\) 0 0
\(279\) 0.108209 2.34370i 0.00647832 0.140314i
\(280\) 0 0
\(281\) 11.3596 + 19.6755i 0.677659 + 1.17374i 0.975684 + 0.219182i \(0.0703389\pi\)
−0.298025 + 0.954558i \(0.596328\pi\)
\(282\) 0 0
\(283\) −0.405631 + 0.702573i −0.0241122 + 0.0417636i −0.877830 0.478973i \(-0.841009\pi\)
0.853717 + 0.520736i \(0.174343\pi\)
\(284\) 0 0
\(285\) 27.7745 + 8.13327i 1.64522 + 0.481773i
\(286\) 0 0
\(287\) 2.40474 0.141947
\(288\) 0 0
\(289\) −1.90983 −0.112343
\(290\) 0 0
\(291\) −2.13780 + 2.04137i −0.125320 + 0.119667i
\(292\) 0 0
\(293\) −8.22954 + 14.2540i −0.480775 + 0.832726i −0.999757 0.0220590i \(-0.992978\pi\)
0.518982 + 0.854785i \(0.326311\pi\)
\(294\) 0 0
\(295\) −1.76258 3.05288i −0.102621 0.177745i
\(296\) 0 0
\(297\) 5.56485 16.1934i 0.322905 0.939637i
\(298\) 0 0
\(299\) 2.33425 + 4.04304i 0.134993 + 0.233815i
\(300\) 0 0
\(301\) −1.67650 + 2.90378i −0.0966318 + 0.167371i
\(302\) 0 0
\(303\) −3.29294 + 3.14441i −0.189174 + 0.180642i
\(304\) 0 0
\(305\) 54.0409 3.09437
\(306\) 0 0
\(307\) −1.61680 −0.0922754 −0.0461377 0.998935i \(-0.514691\pi\)
−0.0461377 + 0.998935i \(0.514691\pi\)
\(308\) 0 0
\(309\) −22.5473 6.60258i −1.28267 0.375607i
\(310\) 0 0
\(311\) −14.8865 + 25.7842i −0.844136 + 1.46209i 0.0422326 + 0.999108i \(0.486553\pi\)
−0.886369 + 0.462979i \(0.846780\pi\)
\(312\) 0 0
\(313\) −1.00615 1.74270i −0.0568707 0.0985030i 0.836188 0.548442i \(-0.184779\pi\)
−0.893059 + 0.449939i \(0.851446\pi\)
\(314\) 0 0
\(315\) 3.50932 1.81568i 0.197728 0.102302i
\(316\) 0 0
\(317\) −6.51655 11.2870i −0.366006 0.633941i 0.622931 0.782277i \(-0.285942\pi\)
−0.988937 + 0.148336i \(0.952608\pi\)
\(318\) 0 0
\(319\) −7.32446 + 12.6863i −0.410091 + 0.710298i
\(320\) 0 0
\(321\) 1.46718 + 6.02855i 0.0818900 + 0.336481i
\(322\) 0 0
\(323\) −17.3194 −0.963676
\(324\) 0 0
\(325\) 9.04525 0.501740
\(326\) 0 0
\(327\) 4.54908 + 18.6919i 0.251565 + 1.03366i
\(328\) 0 0
\(329\) −0.363052 + 0.628825i −0.0200157 + 0.0346682i
\(330\) 0 0
\(331\) −1.21081 2.09718i −0.0665520 0.115271i 0.830829 0.556527i \(-0.187866\pi\)
−0.897381 + 0.441256i \(0.854533\pi\)
\(332\) 0 0
\(333\) 30.4610 15.7602i 1.66925 0.863652i
\(334\) 0 0
\(335\) −7.97318 13.8099i −0.435621 0.754518i
\(336\) 0 0
\(337\) 15.5590 26.9490i 0.847552 1.46800i −0.0358338 0.999358i \(-0.511409\pi\)
0.883386 0.468646i \(-0.155258\pi\)
\(338\) 0 0
\(339\) −3.43578 1.00611i −0.186606 0.0546442i
\(340\) 0 0
\(341\) −2.57715 −0.139560
\(342\) 0 0
\(343\) 4.87666 0.263315
\(344\) 0 0
\(345\) −21.9169 + 20.9283i −1.17997 + 1.12674i
\(346\) 0 0
\(347\) 9.88032 17.1132i 0.530403 0.918686i −0.468967 0.883215i \(-0.655374\pi\)
0.999371 0.0354701i \(-0.0112928\pi\)
\(348\) 0 0
\(349\) −2.46951 4.27732i −0.132190 0.228960i 0.792330 0.610092i \(-0.208868\pi\)
−0.924521 + 0.381132i \(0.875534\pi\)
\(350\) 0 0
\(351\) 5.10008 0.994568i 0.272222 0.0530861i
\(352\) 0 0
\(353\) −4.03380 6.98675i −0.214698 0.371867i 0.738481 0.674274i \(-0.235543\pi\)
−0.953179 + 0.302407i \(0.902210\pi\)
\(354\) 0 0
\(355\) 9.85466 17.0688i 0.523031 0.905916i
\(356\) 0 0
\(357\) −1.71012 + 1.63299i −0.0905092 + 0.0864268i
\(358\) 0 0
\(359\) −5.70600 −0.301151 −0.150576 0.988598i \(-0.548113\pi\)
−0.150576 + 0.988598i \(0.548113\pi\)
\(360\) 0 0
\(361\) 0.877919 0.0462063
\(362\) 0 0
\(363\) 0.234319 + 0.0686161i 0.0122985 + 0.00360141i
\(364\) 0 0
\(365\) −13.2936 + 23.0252i −0.695819 + 1.20519i
\(366\) 0 0
\(367\) 5.24676 + 9.08766i 0.273879 + 0.474372i 0.969852 0.243696i \(-0.0783600\pi\)
−0.695973 + 0.718068i \(0.745027\pi\)
\(368\) 0 0
\(369\) −0.946773 + 20.5061i −0.0492870 + 1.06751i
\(370\) 0 0
\(371\) −0.523206 0.906219i −0.0271635 0.0470486i
\(372\) 0 0
\(373\) 14.4631 25.0508i 0.748870 1.29708i −0.199494 0.979899i \(-0.563930\pi\)
0.948365 0.317182i \(-0.102737\pi\)
\(374\) 0 0
\(375\) 6.20935 + 25.5139i 0.320650 + 1.31753i
\(376\) 0 0
\(377\) −4.44539 −0.228949
\(378\) 0 0
\(379\) −35.6342 −1.83040 −0.915202 0.402995i \(-0.867969\pi\)
−0.915202 + 0.402995i \(0.867969\pi\)
\(380\) 0 0
\(381\) −6.17530 25.3739i −0.316370 1.29995i
\(382\) 0 0
\(383\) 10.3651 17.9529i 0.529632 0.917350i −0.469770 0.882789i \(-0.655663\pi\)
0.999403 0.0345616i \(-0.0110035\pi\)
\(384\) 0 0
\(385\) −2.17007 3.75867i −0.110597 0.191560i
\(386\) 0 0
\(387\) −24.1016 15.4394i −1.22515 0.784829i
\(388\) 0 0
\(389\) −10.0822 17.4629i −0.511189 0.885405i −0.999916 0.0129685i \(-0.995872\pi\)
0.488727 0.872437i \(-0.337461\pi\)
\(390\) 0 0
\(391\) 9.06764 15.7056i 0.458570 0.794267i
\(392\) 0 0
\(393\) −22.6731 6.63943i −1.14371 0.334915i
\(394\) 0 0
\(395\) −53.2683 −2.68022
\(396\) 0 0
\(397\) −2.27323 −0.114090 −0.0570450 0.998372i \(-0.518168\pi\)
−0.0570450 + 0.998372i \(0.518168\pi\)
\(398\) 0 0
\(399\) 1.96275 1.87422i 0.0982604 0.0938284i
\(400\) 0 0
\(401\) −13.0963 + 22.6835i −0.653999 + 1.13276i 0.328144 + 0.944628i \(0.393577\pi\)
−0.982144 + 0.188132i \(0.939757\pi\)
\(402\) 0 0
\(403\) −0.391033 0.677289i −0.0194787 0.0337382i
\(404\) 0 0
\(405\) 14.1013 + 30.6401i 0.700701 + 1.52252i
\(406\) 0 0
\(407\) −18.8363 32.6254i −0.933680 1.61718i
\(408\) 0 0
\(409\) −4.03259 + 6.98464i −0.199399 + 0.345368i −0.948334 0.317275i \(-0.897232\pi\)
0.748935 + 0.662643i \(0.230566\pi\)
\(410\) 0 0
\(411\) −7.81070 + 7.45840i −0.385274 + 0.367896i
\(412\) 0 0
\(413\) −0.330565 −0.0162660
\(414\) 0 0
\(415\) −47.0499 −2.30959
\(416\) 0 0
\(417\) −2.77924 0.813851i −0.136100 0.0398544i
\(418\) 0 0
\(419\) −8.74243 + 15.1423i −0.427096 + 0.739751i −0.996614 0.0822277i \(-0.973797\pi\)
0.569518 + 0.821979i \(0.307130\pi\)
\(420\) 0 0
\(421\) 10.0221 + 17.3588i 0.488447 + 0.846015i 0.999912 0.0132894i \(-0.00423028\pi\)
−0.511465 + 0.859304i \(0.670897\pi\)
\(422\) 0 0
\(423\) −5.21929 3.34346i −0.253771 0.162565i
\(424\) 0 0
\(425\) −17.5686 30.4298i −0.852204 1.47606i
\(426\) 0 0
\(427\) 2.53379 4.38866i 0.122619 0.212382i
\(428\) 0 0
\(429\) −1.34968 5.54576i −0.0651632 0.267752i
\(430\) 0 0
\(431\) 8.01436 0.386038 0.193019 0.981195i \(-0.438172\pi\)
0.193019 + 0.981195i \(0.438172\pi\)
\(432\) 0 0
\(433\) −25.8390 −1.24174 −0.620872 0.783912i \(-0.713221\pi\)
−0.620872 + 0.783912i \(0.713221\pi\)
\(434\) 0 0
\(435\) −6.82355 28.0376i −0.327164 1.34430i
\(436\) 0 0
\(437\) −10.4072 + 18.0258i −0.497843 + 0.862289i
\(438\) 0 0
\(439\) −1.22088 2.11463i −0.0582697 0.100926i 0.835419 0.549613i \(-0.185225\pi\)
−0.893689 + 0.448687i \(0.851892\pi\)
\(440\) 0 0
\(441\) −0.951454 + 20.6075i −0.0453074 + 0.981311i
\(442\) 0 0
\(443\) 8.70678 + 15.0806i 0.413672 + 0.716500i 0.995288 0.0969631i \(-0.0309129\pi\)
−0.581616 + 0.813463i \(0.697580\pi\)
\(444\) 0 0
\(445\) 10.4234 18.0539i 0.494117 0.855836i
\(446\) 0 0
\(447\) −27.5760 8.07514i −1.30430 0.381941i
\(448\) 0 0
\(449\) 18.3826 0.867528 0.433764 0.901026i \(-0.357185\pi\)
0.433764 + 0.901026i \(0.357185\pi\)
\(450\) 0 0
\(451\) 22.5486 1.06177
\(452\) 0 0
\(453\) −19.5415 + 18.6601i −0.918141 + 0.876728i
\(454\) 0 0
\(455\) 0.658534 1.14061i 0.0308725 0.0534728i
\(456\) 0 0
\(457\) 7.96425 + 13.7945i 0.372552 + 0.645279i 0.989957 0.141366i \(-0.0451495\pi\)
−0.617405 + 0.786645i \(0.711816\pi\)
\(458\) 0 0
\(459\) −13.2518 15.2258i −0.618541 0.710678i
\(460\) 0 0
\(461\) −13.8147 23.9277i −0.643414 1.11443i −0.984665 0.174454i \(-0.944184\pi\)
0.341251 0.939972i \(-0.389149\pi\)
\(462\) 0 0
\(463\) −10.0645 + 17.4323i −0.467739 + 0.810148i −0.999320 0.0368592i \(-0.988265\pi\)
0.531581 + 0.847007i \(0.321598\pi\)
\(464\) 0 0
\(465\) 3.67151 3.50591i 0.170262 0.162583i
\(466\) 0 0
\(467\) −1.34267 −0.0621315 −0.0310657 0.999517i \(-0.509890\pi\)
−0.0310657 + 0.999517i \(0.509890\pi\)
\(468\) 0 0
\(469\) −1.49534 −0.0690483
\(470\) 0 0
\(471\) 27.1827 + 7.95998i 1.25251 + 0.366777i
\(472\) 0 0
\(473\) −15.7201 + 27.2280i −0.722812 + 1.25195i
\(474\) 0 0
\(475\) 20.1640 + 34.9250i 0.925187 + 1.60247i
\(476\) 0 0
\(477\) 7.93367 4.10479i 0.363258 0.187945i
\(478\) 0 0
\(479\) 5.17811 + 8.96875i 0.236594 + 0.409793i 0.959735 0.280908i \(-0.0906355\pi\)
−0.723141 + 0.690701i \(0.757302\pi\)
\(480\) 0 0
\(481\) 5.71610 9.90057i 0.260632 0.451427i
\(482\) 0 0
\(483\) 0.671980 + 2.76112i 0.0305761 + 0.125636i
\(484\) 0 0
\(485\) −6.39579 −0.290418
\(486\) 0 0
\(487\) 40.8998 1.85335 0.926674 0.375867i \(-0.122655\pi\)
0.926674 + 0.375867i \(0.122655\pi\)
\(488\) 0 0
\(489\) 2.29666 + 9.43685i 0.103859 + 0.426749i
\(490\) 0 0
\(491\) −8.00358 + 13.8626i −0.361197 + 0.625611i −0.988158 0.153439i \(-0.950965\pi\)
0.626961 + 0.779050i \(0.284298\pi\)
\(492\) 0 0
\(493\) 8.63429 + 14.9550i 0.388869 + 0.673541i
\(494\) 0 0
\(495\) 32.9060 17.0252i 1.47901 0.765225i
\(496\) 0 0
\(497\) −0.924102 1.60059i −0.0414516 0.0717963i
\(498\) 0 0
\(499\) 1.18119 2.04589i 0.0528775 0.0915866i −0.838375 0.545094i \(-0.816494\pi\)
0.891253 + 0.453507i \(0.149827\pi\)
\(500\) 0 0
\(501\) 7.86055 + 2.30182i 0.351184 + 0.102838i
\(502\) 0 0
\(503\) −25.8661 −1.15331 −0.576655 0.816988i \(-0.695642\pi\)
−0.576655 + 0.816988i \(0.695642\pi\)
\(504\) 0 0
\(505\) −9.85171 −0.438395
\(506\) 0 0
\(507\) 1.25267 1.19617i 0.0556330 0.0531237i
\(508\) 0 0
\(509\) 10.3604 17.9447i 0.459217 0.795387i −0.539703 0.841855i \(-0.681463\pi\)
0.998920 + 0.0464688i \(0.0147968\pi\)
\(510\) 0 0
\(511\) 1.24658 + 2.15914i 0.0551456 + 0.0955149i
\(512\) 0 0
\(513\) 15.2094 + 17.4750i 0.671513 + 0.771541i
\(514\) 0 0
\(515\) −25.4175 44.0245i −1.12003 1.93995i
\(516\) 0 0
\(517\) −3.40425 + 5.89634i −0.149719 + 0.259321i
\(518\) 0 0
\(519\) −21.0385 + 20.0895i −0.923487 + 0.881833i
\(520\) 0 0
\(521\) −39.8677 −1.74664 −0.873318 0.487150i \(-0.838036\pi\)
−0.873318 + 0.487150i \(0.838036\pi\)
\(522\) 0 0
\(523\) −12.3303 −0.539167 −0.269583 0.962977i \(-0.586886\pi\)
−0.269583 + 0.962977i \(0.586886\pi\)
\(524\) 0 0
\(525\) 5.28396 + 1.54731i 0.230611 + 0.0675303i
\(526\) 0 0
\(527\) −1.51901 + 2.63100i −0.0661691 + 0.114608i
\(528\) 0 0
\(529\) 0.602551 + 1.04365i 0.0261979 + 0.0453760i
\(530\) 0 0
\(531\) 0.130147 2.81885i 0.00564790 0.122328i
\(532\) 0 0
\(533\) 3.42133 + 5.92592i 0.148194 + 0.256680i
\(534\) 0 0
\(535\) −6.71247 + 11.6263i −0.290205 + 0.502650i
\(536\) 0 0
\(537\) 4.82802 + 19.8380i 0.208344 + 0.856074i
\(538\) 0 0
\(539\) 22.6601 0.976042
\(540\) 0 0
\(541\) 22.9129 0.985104 0.492552 0.870283i \(-0.336064\pi\)
0.492552 + 0.870283i \(0.336064\pi\)
\(542\) 0 0
\(543\) −10.6871 43.9128i −0.458629 1.88448i
\(544\) 0 0
\(545\) −20.8124 + 36.0482i −0.891506 + 1.54413i
\(546\) 0 0
\(547\) 3.74712 + 6.49020i 0.160215 + 0.277501i 0.934946 0.354791i \(-0.115448\pi\)
−0.774731 + 0.632291i \(0.782115\pi\)
\(548\) 0 0
\(549\) 36.4262 + 23.3345i 1.55463 + 0.995892i
\(550\) 0 0
\(551\) −9.90981 17.1643i −0.422172 0.731223i
\(552\) 0 0
\(553\) −2.49757 + 4.32591i −0.106207 + 0.183956i
\(554\) 0 0
\(555\) 71.2180 + 20.8550i 3.02304 + 0.885243i
\(556\) 0 0
\(557\) −26.2053 −1.11036 −0.555178 0.831732i \(-0.687350\pi\)
−0.555178 + 0.831732i \(0.687350\pi\)
\(558\) 0 0
\(559\) −9.54092 −0.403538
\(560\) 0 0
\(561\) −16.0354 + 15.3121i −0.677014 + 0.646478i
\(562\) 0 0
\(563\) 13.0128 22.5388i 0.548424 0.949898i −0.449959 0.893049i \(-0.648561\pi\)
0.998383 0.0568489i \(-0.0181053\pi\)
\(564\) 0 0
\(565\) −3.87315 6.70849i −0.162945 0.282228i
\(566\) 0 0
\(567\) 3.14945 + 0.291442i 0.132264 + 0.0122394i
\(568\) 0 0
\(569\) −14.9250 25.8509i −0.625689 1.08373i −0.988407 0.151827i \(-0.951484\pi\)
0.362718 0.931899i \(-0.381849\pi\)
\(570\) 0 0
\(571\) −4.48711 + 7.77190i −0.187780 + 0.325244i −0.944510 0.328484i \(-0.893462\pi\)
0.756730 + 0.653727i \(0.226796\pi\)
\(572\) 0 0
\(573\) −19.8412 + 18.9463i −0.828879 + 0.791493i
\(574\) 0 0
\(575\) −42.2278 −1.76102
\(576\) 0 0
\(577\) −32.4990 −1.35295 −0.676476 0.736465i \(-0.736494\pi\)
−0.676476 + 0.736465i \(0.736494\pi\)
\(578\) 0 0
\(579\) −18.4084 5.39059i −0.765029 0.224025i
\(580\) 0 0
\(581\) −2.20601 + 3.82092i −0.0915207 + 0.158518i
\(582\) 0 0
\(583\) −4.90597 8.49739i −0.203185 0.351926i
\(584\) 0 0
\(585\) 9.46718 + 6.06464i 0.391420 + 0.250742i
\(586\) 0 0
\(587\) 7.11365 + 12.3212i 0.293612 + 0.508550i 0.974661 0.223687i \(-0.0718094\pi\)
−0.681049 + 0.732238i \(0.738476\pi\)
\(588\) 0 0
\(589\) 1.74341 3.01967i 0.0718359 0.124423i
\(590\) 0 0
\(591\) 3.42664 + 14.0799i 0.140953 + 0.579168i
\(592\) 0 0
\(593\) −14.7975 −0.607662 −0.303831 0.952726i \(-0.598266\pi\)
−0.303831 + 0.952726i \(0.598266\pi\)
\(594\) 0 0
\(595\) −5.11629 −0.209747
\(596\) 0 0
\(597\) 1.07865 + 4.43209i 0.0441461 + 0.181393i
\(598\) 0 0
\(599\) −0.671811 + 1.16361i −0.0274495 + 0.0475438i −0.879424 0.476040i \(-0.842072\pi\)
0.851974 + 0.523584i \(0.175405\pi\)
\(600\) 0 0
\(601\) −14.3597 24.8718i −0.585746 1.01454i −0.994782 0.102024i \(-0.967468\pi\)
0.409036 0.912518i \(-0.365865\pi\)
\(602\) 0 0
\(603\) 0.588732 12.7513i 0.0239750 0.519274i
\(604\) 0 0
\(605\) 0.264147 + 0.457517i 0.0107391 + 0.0186007i
\(606\) 0 0
\(607\) 1.56230 2.70598i 0.0634118 0.109832i −0.832577 0.553910i \(-0.813135\pi\)
0.895988 + 0.444078i \(0.146469\pi\)
\(608\) 0 0
\(609\) −2.59686 0.760445i −0.105230 0.0308148i
\(610\) 0 0
\(611\) −2.06612 −0.0835864
\(612\) 0 0
\(613\) 19.6800 0.794867 0.397433 0.917631i \(-0.369901\pi\)
0.397433 + 0.917631i \(0.369901\pi\)
\(614\) 0 0
\(615\) −32.1238 + 30.6748i −1.29535 + 1.23693i
\(616\) 0 0
\(617\) −5.02955 + 8.71143i −0.202482 + 0.350709i −0.949328 0.314288i \(-0.898234\pi\)
0.746846 + 0.664998i \(0.231567\pi\)
\(618\) 0 0
\(619\) 21.2803 + 36.8585i 0.855326 + 1.48147i 0.876342 + 0.481689i \(0.159976\pi\)
−0.0210164 + 0.999779i \(0.506690\pi\)
\(620\) 0 0
\(621\) −23.8097 + 4.64314i −0.955452 + 0.186323i
\(622\) 0 0
\(623\) −0.977436 1.69297i −0.0391601 0.0678273i
\(624\) 0 0
\(625\) −5.79518 + 10.0375i −0.231807 + 0.401502i
\(626\) 0 0
\(627\) 18.4042 17.5741i 0.734994 0.701842i
\(628\) 0 0
\(629\) −44.4096 −1.77073
\(630\) 0 0
\(631\) 20.2946 0.807916 0.403958 0.914778i \(-0.367634\pi\)
0.403958 + 0.914778i \(0.367634\pi\)
\(632\) 0 0
\(633\) 40.4849 + 11.8553i 1.60913 + 0.471205i
\(634\) 0 0
\(635\) 28.2525 48.9348i 1.12117 1.94192i
\(636\) 0 0
\(637\) 3.43825 + 5.95522i 0.136228 + 0.235954i
\(638\) 0 0
\(639\) 14.0127 7.25000i 0.554333 0.286805i
\(640\) 0 0
\(641\) −1.74579 3.02380i −0.0689546 0.119433i 0.829487 0.558526i \(-0.188633\pi\)
−0.898441 + 0.439094i \(0.855300\pi\)
\(642\) 0 0
\(643\) 17.5279 30.3592i 0.691233 1.19725i −0.280202 0.959941i \(-0.590401\pi\)
0.971434 0.237309i \(-0.0762654\pi\)
\(644\) 0 0
\(645\) −14.6450 60.1756i −0.576648 2.36941i
\(646\) 0 0
\(647\) 44.6001 1.75341 0.876705 0.481028i \(-0.159736\pi\)
0.876705 + 0.481028i \(0.159736\pi\)
\(648\) 0 0
\(649\) −3.09963 −0.121671
\(650\) 0 0
\(651\) −0.112570 0.462543i −0.00441196 0.0181285i
\(652\) 0 0
\(653\) 5.89687 10.2137i 0.230762 0.399692i −0.727270 0.686351i \(-0.759211\pi\)
0.958033 + 0.286659i \(0.0925447\pi\)
\(654\) 0 0
\(655\) −25.5594 44.2702i −0.998689 1.72978i
\(656\) 0 0
\(657\) −18.9026 + 9.78001i −0.737462 + 0.381554i
\(658\) 0 0
\(659\) 9.08369 + 15.7334i 0.353850 + 0.612887i 0.986920 0.161208i \(-0.0515389\pi\)
−0.633070 + 0.774094i \(0.718206\pi\)
\(660\) 0 0
\(661\) −2.10078 + 3.63866i −0.0817108 + 0.141527i −0.903985 0.427564i \(-0.859372\pi\)
0.822274 + 0.569092i \(0.192705\pi\)
\(662\) 0 0
\(663\) −6.45718 1.89087i −0.250776 0.0734353i
\(664\) 0 0
\(665\) 5.87210 0.227710
\(666\) 0 0
\(667\) 20.7533 0.803571
\(668\) 0 0
\(669\) 32.2190 30.7658i 1.24566 1.18947i
\(670\) 0 0
\(671\) 23.7588 41.1514i 0.917196 1.58863i
\(672\) 0 0
\(673\) 22.2315 + 38.5061i 0.856961 + 1.48430i 0.874814 + 0.484459i \(0.160983\pi\)
−0.0178535 + 0.999841i \(0.505683\pi\)
\(674\) 0 0
\(675\) −15.2749 + 44.4491i −0.587931 + 1.71085i
\(676\) 0 0
\(677\) −3.74338 6.48372i −0.143870 0.249189i 0.785081 0.619393i \(-0.212621\pi\)
−0.928951 + 0.370204i \(0.879288\pi\)
\(678\) 0 0
\(679\) −0.299877 + 0.519402i −0.0115082 + 0.0199328i
\(680\) 0 0
\(681\) 28.0001 26.7371i 1.07297 1.02457i
\(682\) 0 0
\(683\) 38.6166 1.47762 0.738811 0.673912i \(-0.235387\pi\)
0.738811 + 0.673912i \(0.235387\pi\)
\(684\) 0 0
\(685\) −23.3678 −0.892839
\(686\) 0 0
\(687\) −8.04603 2.35614i −0.306975 0.0898923i
\(688\) 0 0
\(689\) 1.48878 2.57864i 0.0567179 0.0982382i
\(690\) 0 0
\(691\) −10.2047 17.6751i −0.388206 0.672393i 0.604002 0.796983i \(-0.293572\pi\)
−0.992208 + 0.124590i \(0.960239\pi\)
\(692\) 0 0
\(693\) 0.160236 3.47054i 0.00608686 0.131835i
\(694\) 0 0
\(695\) −3.13303 5.42657i −0.118843 0.205842i
\(696\) 0 0
\(697\) 13.2905 23.0199i 0.503414 0.871939i
\(698\) 0 0
\(699\) 10.2738 + 42.2146i 0.388592 + 1.59670i
\(700\) 0 0
\(701\) −19.9987 −0.755341 −0.377670 0.925940i \(-0.623275\pi\)
−0.377670 + 0.925940i \(0.623275\pi\)
\(702\) 0 0
\(703\) 50.9701 1.92237
\(704\) 0 0
\(705\) −3.17144 13.0313i −0.119443 0.490786i
\(706\) 0 0
\(707\) −0.461913 + 0.800057i −0.0173720 + 0.0300892i
\(708\) 0 0
\(709\) 6.60484 + 11.4399i 0.248050 + 0.429635i 0.962985 0.269556i \(-0.0868769\pi\)
−0.714935 + 0.699191i \(0.753544\pi\)
\(710\) 0 0
\(711\) −35.9054 23.0009i −1.34656 0.862600i
\(712\) 0 0
\(713\) 1.82554 + 3.16192i 0.0683669 + 0.118415i
\(714\) 0 0
\(715\) 6.17491 10.6953i 0.230928 0.399980i
\(716\) 0 0
\(717\) −40.9219 11.9833i −1.52826 0.447523i
\(718\) 0 0
\(719\) −36.4662 −1.35996 −0.679979 0.733231i \(-0.738011\pi\)
−0.679979 + 0.733231i \(0.738011\pi\)
\(720\) 0 0
\(721\) −4.76696 −0.177531
\(722\) 0 0
\(723\) −25.2812 + 24.1409i −0.940219 + 0.897811i
\(724\) 0 0
\(725\) 20.1048 34.8226i 0.746675 1.29328i
\(726\) 0 0
\(727\) −20.5827 35.6503i −0.763371 1.32220i −0.941103 0.338119i \(-0.890209\pi\)
0.177732 0.984079i \(-0.443124\pi\)
\(728\) 0 0
\(729\) −3.72521 + 26.7418i −0.137971 + 0.990436i
\(730\) 0 0
\(731\) 18.5314 + 32.0972i 0.685407 + 1.18716i
\(732\) 0 0
\(733\) 14.7514 25.5503i 0.544857 0.943720i −0.453759 0.891125i \(-0.649917\pi\)
0.998616 0.0525958i \(-0.0167495\pi\)
\(734\) 0 0
\(735\) −32.2826 + 30.8265i −1.19076 + 1.13705i
\(736\) 0 0
\(737\) −14.0214 −0.516486
\(738\) 0 0
\(739\) 44.3622 1.63189 0.815945 0.578129i \(-0.196217\pi\)
0.815945 + 0.578129i \(0.196217\pi\)
\(740\) 0 0
\(741\) 7.41107 + 2.17020i 0.272253 + 0.0797244i
\(742\) 0 0
\(743\) 5.07949 8.79794i 0.186349 0.322765i −0.757682 0.652624i \(-0.773668\pi\)
0.944030 + 0.329859i \(0.107001\pi\)
\(744\) 0 0
\(745\) −31.0864 53.8432i −1.13892 1.97266i
\(746\) 0 0
\(747\) −31.7139 20.3158i −1.16035 0.743317i
\(748\) 0 0
\(749\) 0.629449 + 1.09024i 0.0229996 + 0.0398364i
\(750\) 0 0
\(751\) −3.81481 + 6.60744i −0.139204 + 0.241109i −0.927196 0.374577i \(-0.877788\pi\)
0.787991 + 0.615686i \(0.211121\pi\)
\(752\) 0 0
\(753\) 10.7767 + 44.2808i 0.392724 + 1.61368i
\(754\) 0 0
\(755\) −58.4637 −2.12771
\(756\) 0 0
\(757\) 49.6248 1.80364 0.901822 0.432107i \(-0.142230\pi\)
0.901822 + 0.432107i \(0.142230\pi\)
\(758\) 0 0
\(759\) 6.30099 + 25.8904i 0.228711 + 0.939762i
\(760\) 0 0
\(761\) 9.85989 17.0778i 0.357421 0.619071i −0.630108 0.776507i \(-0.716990\pi\)
0.987529 + 0.157436i \(0.0503229\pi\)
\(762\) 0 0
\(763\) 1.95165 + 3.38035i 0.0706543 + 0.122377i
\(764\) 0 0
\(765\) 2.01434 43.6285i 0.0728286 1.57739i
\(766\) 0 0
\(767\) −0.470310 0.814600i −0.0169819 0.0294135i
\(768\) 0 0
\(769\) 25.6736 44.4679i 0.925812 1.60355i 0.135563 0.990769i \(-0.456716\pi\)
0.790250 0.612785i \(-0.209951\pi\)
\(770\) 0 0
\(771\) 15.0303 + 4.40137i 0.541305 + 0.158512i
\(772\) 0 0
\(773\) −1.28424 −0.0461910 −0.0230955 0.999733i \(-0.507352\pi\)
−0.0230955 + 0.999733i \(0.507352\pi\)
\(774\) 0 0
\(775\) 7.07399 0.254105
\(776\) 0 0
\(777\) 5.03280 4.80579i 0.180551 0.172407i
\(778\) 0 0
\(779\) −15.2539 + 26.4205i −0.546527 + 0.946613i
\(780\) 0 0
\(781\) −8.66507 15.0083i −0.310061 0.537041i
\(782\) 0 0
\(783\) 7.50701 21.8450i 0.268279 0.780677i
\(784\) 0 0
\(785\) 30.6431 + 53.0753i 1.09370 + 1.89434i
\(786\) 0 0
\(787\) 0.0130933 0.0226783i 0.000466726 0.000808392i −0.865792 0.500404i \(-0.833185\pi\)
0.866259 + 0.499596i \(0.166518\pi\)
\(788\) 0 0
\(789\) −2.38761 + 2.27992i −0.0850011 + 0.0811671i
\(790\) 0 0
\(791\) −0.726395 −0.0258276
\(792\) 0 0
\(793\) 14.4198 0.512061
\(794\) 0 0
\(795\) 18.5490 + 5.43174i 0.657864 + 0.192644i
\(796\) 0 0
\(797\) 7.48668 12.9673i 0.265192 0.459326i −0.702422 0.711761i \(-0.747898\pi\)
0.967614 + 0.252435i \(0.0812314\pi\)
\(798\) 0 0
\(799\) 4.01304 + 6.95078i 0.141971 + 0.245901i
\(800\) 0 0
\(801\) 14.8214 7.66843i 0.523689 0.270951i
\(802\) 0 0
\(803\) 11.6889 + 20.2458i 0.412492 + 0.714458i
\(804\) 0 0
\(805\) −3.07436 + 5.32496i −0.108357 + 0.187680i
\(806\) 0 0
\(807\) 5.54129 + 22.7688i 0.195063 + 0.801501i
\(808\) 0 0
\(809\) 41.1952 1.44834 0.724172 0.689619i \(-0.242222\pi\)
0.724172 + 0.689619i \(0.242222\pi\)
\(810\) 0 0
\(811\) −49.0285 −1.72162 −0.860811 0.508924i \(-0.830043\pi\)
−0.860811 + 0.508924i \(0.830043\pi\)
\(812\) 0 0
\(813\) 3.54740 + 14.5761i 0.124413 + 0.511205i
\(814\) 0 0
\(815\) −10.5074 + 18.1994i −0.368059 + 0.637497i
\(816\) 0 0
\(817\) −21.2689 36.8389i −0.744106 1.28883i
\(818\) 0 0
\(819\) 0.936392 0.484478i 0.0327202 0.0169290i
\(820\) 0 0
\(821\) 4.88998 + 8.46969i 0.170661 + 0.295594i 0.938651 0.344868i \(-0.112076\pi\)
−0.767990 + 0.640462i \(0.778743\pi\)
\(822\) 0 0
\(823\) 17.6004 30.4848i 0.613512 1.06263i −0.377132 0.926159i \(-0.623090\pi\)
0.990644 0.136474i \(-0.0435769\pi\)
\(824\) 0 0
\(825\) 49.5464 + 14.5088i 1.72498 + 0.505131i
\(826\) 0 0
\(827\) −4.45020 −0.154749 −0.0773743 0.997002i \(-0.524654\pi\)
−0.0773743 + 0.997002i \(0.524654\pi\)
\(828\) 0 0
\(829\) 31.8398 1.10584 0.552921 0.833234i \(-0.313513\pi\)
0.552921 + 0.833234i \(0.313513\pi\)
\(830\) 0 0
\(831\) 31.9308 30.4906i 1.10767 1.05771i
\(832\) 0 0
\(833\) 13.3562 23.1337i 0.462766 0.801535i
\(834\) 0 0
\(835\) 8.86120 + 15.3480i 0.306654 + 0.531141i
\(836\) 0 0
\(837\) 3.98860 0.777818i 0.137866 0.0268853i
\(838\) 0 0
\(839\) 27.0849 + 46.9125i 0.935076 + 1.61960i 0.774499 + 0.632576i \(0.218002\pi\)
0.160577 + 0.987023i \(0.448664\pi\)
\(840\) 0 0
\(841\) 4.61926 8.00079i 0.159285 0.275889i
\(842\) 0 0
\(843\) −28.4598 + 27.1761i −0.980206 + 0.935994i
\(844\) 0 0
\(845\) 3.74770 0.128925
\(846\) 0 0
\(847\) 0.0495398 0.00170221
\(848\) 0 0
\(849\) −1.34852 0.394889i −0.0462810 0.0135526i
\(850\) 0 0
\(851\) −26.6856 + 46.2208i −0.914771 + 1.58443i
\(852\) 0 0
\(853\) 20.3524 + 35.2514i 0.696853 + 1.20699i 0.969552 + 0.244886i \(0.0787504\pi\)
−0.272699 + 0.962099i \(0.587916\pi\)
\(854\) 0 0
\(855\) −2.31191 + 50.0736i −0.0790657 + 1.71248i
\(856\) 0 0
\(857\) −1.30175 2.25470i −0.0444669 0.0770189i 0.842935 0.538015i \(-0.180826\pi\)
−0.887402 + 0.460996i \(0.847492\pi\)
\(858\) 0 0
\(859\) 8.22618 14.2482i 0.280674 0.486141i −0.690877 0.722972i \(-0.742776\pi\)
0.971551 + 0.236831i \(0.0761088\pi\)
\(860\) 0 0
\(861\) 0.984926 + 4.04700i 0.0335662 + 0.137921i
\(862\) 0 0
\(863\) 18.2597 0.621566 0.310783 0.950481i \(-0.399409\pi\)
0.310783 + 0.950481i \(0.399409\pi\)
\(864\) 0 0
\(865\) −62.9423 −2.14010
\(866\) 0 0
\(867\) −0.782224 3.21411i −0.0265657 0.109157i
\(868\) 0 0
\(869\) −23.4191 + 40.5630i −0.794437 + 1.37601i
\(870\) 0 0
\(871\) −2.12749 3.68491i −0.0720871 0.124859i
\(872\) 0 0
\(873\) −4.31107 2.76166i −0.145908 0.0934680i
\(874\) 0 0
\(875\) 2.66394 + 4.61407i 0.0900575 + 0.155984i
\(876\) 0 0
\(877\) 21.3370 36.9567i 0.720498 1.24794i −0.240302 0.970698i \(-0.577246\pi\)
0.960800 0.277242i \(-0.0894203\pi\)
\(878\) 0 0
\(879\) −27.3590 8.01162i −0.922798 0.270225i
\(880\) 0 0
\(881\) 26.5618 0.894890 0.447445 0.894311i \(-0.352334\pi\)
0.447445 + 0.894311i \(0.352334\pi\)
\(882\) 0 0
\(883\) 47.3009 1.59180 0.795900 0.605428i \(-0.206998\pi\)
0.795900 + 0.605428i \(0.206998\pi\)
\(884\) 0 0
\(885\) 4.41586 4.21668i 0.148437 0.141742i
\(886\) 0 0
\(887\) 21.3381 36.9587i 0.716464 1.24095i −0.245928 0.969288i \(-0.579093\pi\)
0.962392 0.271664i \(-0.0875738\pi\)
\(888\) 0 0
\(889\) −2.64933 4.58877i −0.0888556 0.153902i
\(890\) 0 0
\(891\) 29.5316 + 2.73278i 0.989345 + 0.0915517i
\(892\) 0 0
\(893\) −4.60587 7.97760i −0.154130 0.266960i
\(894\) 0 0
\(895\) −22.0886 + 38.2585i −0.738340 + 1.27884i
\(896\) 0 0
\(897\) −5.84809 + 5.58431i −0.195262 + 0.186455i
\(898\) 0 0
\(899\) −3.47659 −0.115951
\(900\) 0 0
\(901\) −11.5666 −0.385340
\(902\) 0 0
\(903\) −5.57351 1.63210i −0.185475 0.0543130i
\(904\) 0 0
\(905\) 48.8945 84.6878i 1.62531 2.81512i
\(906\) 0 0
\(907\) 20.1924 + 34.9742i 0.670477 + 1.16130i 0.977769 + 0.209685i \(0.0672438\pi\)
−0.307292 + 0.951615i \(0.599423\pi\)
\(908\) 0 0
\(909\) −6.64053 4.25390i −0.220252 0.141093i
\(910\) 0 0
\(911\) 26.6453 + 46.1511i 0.882799 + 1.52905i 0.848215 + 0.529651i \(0.177677\pi\)
0.0345838 + 0.999402i \(0.488989\pi\)
\(912\) 0 0
\(913\) −20.6852 + 35.8278i −0.684580 + 1.18573i
\(914\) 0 0
\(915\) 22.1339 + 90.9470i 0.731725 + 3.00661i
\(916\) 0 0
\(917\) −4.79357 −0.158298
\(918\) 0 0
\(919\) −5.72441 −0.188831 −0.0944155 0.995533i \(-0.530098\pi\)
−0.0944155 + 0.995533i \(0.530098\pi\)
\(920\) 0 0
\(921\) −0.662203 2.72095i −0.0218203 0.0896584i
\(922\) 0 0
\(923\) 2.62952 4.55446i 0.0865517 0.149912i
\(924\) 0 0
\(925\) 51.7036 + 89.5532i 1.70000 + 2.94449i
\(926\) 0 0
\(927\) 1.87681 40.6497i 0.0616424 1.33511i
\(928\) 0 0
\(929\) −2.36266 4.09225i −0.0775165 0.134262i 0.824661 0.565627i \(-0.191366\pi\)
−0.902178 + 0.431364i \(0.858032\pi\)
\(930\) 0 0
\(931\) −15.3293 + 26.5511i −0.502398 + 0.870179i
\(932\) 0 0
\(933\) −49.4901 14.4923i −1.62023 0.474457i
\(934\) 0 0
\(935\) −47.9742 −1.56892
\(936\) 0 0
\(937\) −1.19269 −0.0389635 −0.0194818 0.999810i \(-0.506202\pi\)
−0.0194818 + 0.999810i \(0.506202\pi\)
\(938\) 0 0
\(939\) 2.52074 2.40704i 0.0822612 0.0785508i
\(940\) 0 0
\(941\) −21.2736 + 36.8470i −0.693500 + 1.20118i 0.277184 + 0.960817i \(0.410599\pi\)
−0.970684 + 0.240360i \(0.922734\pi\)
\(942\) 0 0
\(943\) −15.9725 27.6651i −0.520135 0.900901i
\(944\) 0 0
\(945\) 4.49299 + 5.16227i 0.146157 + 0.167929i
\(946\) 0 0
\(947\) 9.57469 + 16.5839i 0.311136 + 0.538903i 0.978609 0.205731i \(-0.0659573\pi\)
−0.667473 + 0.744634i \(0.732624\pi\)
\(948\) 0 0
\(949\) −3.54714 + 6.14382i −0.115145 + 0.199437i
\(950\) 0 0
\(951\) 16.3262 15.5898i 0.529413 0.505533i
\(952\) 0 0
\(953\) 42.6090 1.38024 0.690120 0.723695i \(-0.257558\pi\)
0.690120 + 0.723695i \(0.257558\pi\)
\(954\) 0 0
\(955\) −59.3604 −1.92086
\(956\) 0 0
\(957\) −24.3501 7.13050i −0.787127 0.230496i
\(958\) 0 0
\(959\) −1.09564 + 1.89770i −0.0353800 + 0.0612799i
\(960\) 0 0
\(961\) 15.1942 + 26.3171i 0.490135 + 0.848939i
\(962\) 0 0
\(963\) −9.54469 + 4.93831i −0.307573 + 0.159135i
\(964\) 0 0
\(965\) −20.7518 35.9432i −0.668025 1.15705i
\(966\) 0 0
\(967\) 11.2242 19.4409i 0.360947 0.625178i −0.627170 0.778882i \(-0.715787\pi\)
0.988117 + 0.153704i \(0.0491203\pi\)
\(968\) 0 0
\(969\) −7.09362 29.1473i −0.227880 0.936345i
\(970\) 0 0
\(971\) 36.1977 1.16164 0.580820 0.814032i \(-0.302732\pi\)
0.580820 + 0.814032i \(0.302732\pi\)
\(972\) 0 0
\(973\) −0.587588 −0.0188372
\(974\) 0 0
\(975\) 3.70473 + 15.2225i 0.118646 + 0.487511i
\(976\) 0 0
\(977\) 2.56406 4.44108i 0.0820316 0.142083i −0.822091 0.569356i \(-0.807193\pi\)
0.904122 + 0.427273i \(0.140526\pi\)
\(978\) 0 0
\(979\) −9.16517 15.8745i −0.292920 0.507353i
\(980\) 0 0
\(981\) −29.5939 + 15.3115i −0.944861 + 0.488860i
\(982\) 0 0
\(983\) 12.7722 + 22.1221i 0.407369 + 0.705584i 0.994594 0.103840i \(-0.0331129\pi\)
−0.587225 + 0.809424i \(0.699780\pi\)
\(984\) 0 0
\(985\) −15.6772 + 27.1536i −0.499516 + 0.865187i
\(986\) 0 0
\(987\) −1.20697 0.353439i −0.0384181 0.0112501i
\(988\) 0 0
\(989\) 44.5418 1.41635
\(990\) 0 0
\(991\) −6.62586 −0.210477 −0.105239 0.994447i \(-0.533561\pi\)
−0.105239 + 0.994447i \(0.533561\pi\)
\(992\) 0 0
\(993\) 3.03348 2.89666i 0.0962647 0.0919227i
\(994\) 0 0
\(995\) −4.93490 + 8.54749i −0.156447 + 0.270974i
\(996\) 0 0
\(997\) 9.46041 + 16.3859i 0.299614 + 0.518947i 0.976048 0.217557i \(-0.0698088\pi\)
−0.676434 + 0.736504i \(0.736475\pi\)
\(998\) 0 0
\(999\) 38.9994 + 44.8087i 1.23389 + 1.41768i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.q.d.625.5 yes 12
3.2 odd 2 2808.2.q.d.1873.6 12
9.2 odd 6 2808.2.q.d.937.6 12
9.4 even 3 8424.2.a.v.1.6 6
9.5 odd 6 8424.2.a.u.1.1 6
9.7 even 3 inner 936.2.q.d.313.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.q.d.313.5 12 9.7 even 3 inner
936.2.q.d.625.5 yes 12 1.1 even 1 trivial
2808.2.q.d.937.6 12 9.2 odd 6
2808.2.q.d.1873.6 12 3.2 odd 2
8424.2.a.u.1.1 6 9.5 odd 6
8424.2.a.v.1.6 6 9.4 even 3