Properties

Label 936.2.q.d.625.4
Level $936$
Weight $2$
Character 936.625
Analytic conductor $7.474$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(313,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.313");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.q (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 29 x^{10} - 90 x^{9} + 217 x^{8} - 394 x^{7} + 555 x^{6} - 598 x^{5} + 483 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 625.4
Root \(0.500000 + 0.272034i\) of defining polynomial
Character \(\chi\) \(=\) 936.625
Dual form 936.2.q.d.313.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0876778 - 1.72983i) q^{3} +(-0.391618 + 0.678302i) q^{5} +(-0.823587 - 1.42649i) q^{7} +(-2.98463 - 0.303335i) q^{9} +(-0.453596 - 0.785652i) q^{11} +(-0.500000 + 0.866025i) q^{13} +(1.13901 + 0.736904i) q^{15} -6.56503 q^{17} -1.23934 q^{19} +(-2.53980 + 1.29959i) q^{21} +(0.0313504 - 0.0543004i) q^{23} +(2.19327 + 3.79886i) q^{25} +(-0.786404 + 5.13630i) q^{27} +(-2.57767 - 4.46466i) q^{29} +(0.786907 - 1.36296i) q^{31} +(-1.39881 + 0.715760i) q^{33} +1.29012 q^{35} -9.04427 q^{37} +(1.45424 + 0.940846i) q^{39} +(-2.50583 + 4.34023i) q^{41} +(0.205281 + 0.355557i) q^{43} +(1.37458 - 1.90568i) q^{45} +(-1.33708 - 2.31588i) q^{47} +(2.14341 - 3.71249i) q^{49} +(-0.575607 + 11.3564i) q^{51} -5.61642 q^{53} +0.710545 q^{55} +(-0.108663 + 2.14385i) q^{57} +(-3.14465 + 5.44669i) q^{59} +(0.786600 + 1.36243i) q^{61} +(2.02539 + 4.50738i) q^{63} +(-0.391618 - 0.678302i) q^{65} +(6.75497 - 11.7000i) q^{67} +(-0.0911818 - 0.0589918i) q^{69} -8.83191 q^{71} +2.43859 q^{73} +(6.76368 - 3.46091i) q^{75} +(-0.747152 + 1.29411i) q^{77} +(2.20211 + 3.81417i) q^{79} +(8.81598 + 1.81069i) q^{81} +(5.96236 + 10.3271i) q^{83} +(2.57098 - 4.45307i) q^{85} +(-7.94911 + 4.06749i) q^{87} -11.6219 q^{89} +1.64717 q^{91} +(-2.28870 - 1.48072i) q^{93} +(0.485347 - 0.840646i) q^{95} +(-1.23743 - 2.14329i) q^{97} +(1.11550 + 2.48247i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} - q^{5} + 2 q^{7} + 2 q^{9} - q^{11} - 6 q^{13} - 2 q^{15} + 12 q^{17} - 14 q^{19} - 24 q^{21} + 19 q^{23} + 5 q^{25} - 7 q^{27} - 2 q^{29} + 8 q^{31} - 9 q^{33} + 2 q^{35} - 34 q^{37}+ \cdots - 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0876778 1.72983i 0.0506208 0.998718i
\(4\) 0 0
\(5\) −0.391618 + 0.678302i −0.175137 + 0.303346i −0.940209 0.340599i \(-0.889370\pi\)
0.765072 + 0.643945i \(0.222703\pi\)
\(6\) 0 0
\(7\) −0.823587 1.42649i −0.311287 0.539164i 0.667355 0.744740i \(-0.267427\pi\)
−0.978641 + 0.205576i \(0.934093\pi\)
\(8\) 0 0
\(9\) −2.98463 0.303335i −0.994875 0.101112i
\(10\) 0 0
\(11\) −0.453596 0.785652i −0.136764 0.236883i 0.789506 0.613743i \(-0.210337\pi\)
−0.926270 + 0.376860i \(0.877004\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) 0 0
\(15\) 1.13901 + 0.736904i 0.294091 + 0.190268i
\(16\) 0 0
\(17\) −6.56503 −1.59225 −0.796126 0.605130i \(-0.793121\pi\)
−0.796126 + 0.605130i \(0.793121\pi\)
\(18\) 0 0
\(19\) −1.23934 −0.284324 −0.142162 0.989843i \(-0.545405\pi\)
−0.142162 + 0.989843i \(0.545405\pi\)
\(20\) 0 0
\(21\) −2.53980 + 1.29959i −0.554231 + 0.283595i
\(22\) 0 0
\(23\) 0.0313504 0.0543004i 0.00653701 0.0113224i −0.862738 0.505651i \(-0.831253\pi\)
0.869275 + 0.494328i \(0.164586\pi\)
\(24\) 0 0
\(25\) 2.19327 + 3.79886i 0.438654 + 0.759771i
\(26\) 0 0
\(27\) −0.786404 + 5.13630i −0.151344 + 0.988481i
\(28\) 0 0
\(29\) −2.57767 4.46466i −0.478662 0.829067i 0.521039 0.853533i \(-0.325545\pi\)
−0.999701 + 0.0244662i \(0.992211\pi\)
\(30\) 0 0
\(31\) 0.786907 1.36296i 0.141333 0.244795i −0.786666 0.617379i \(-0.788195\pi\)
0.927999 + 0.372583i \(0.121528\pi\)
\(32\) 0 0
\(33\) −1.39881 + 0.715760i −0.243502 + 0.124598i
\(34\) 0 0
\(35\) 1.29012 0.218071
\(36\) 0 0
\(37\) −9.04427 −1.48687 −0.743434 0.668809i \(-0.766804\pi\)
−0.743434 + 0.668809i \(0.766804\pi\)
\(38\) 0 0
\(39\) 1.45424 + 0.940846i 0.232864 + 0.150656i
\(40\) 0 0
\(41\) −2.50583 + 4.34023i −0.391345 + 0.677830i −0.992627 0.121207i \(-0.961324\pi\)
0.601282 + 0.799037i \(0.294657\pi\)
\(42\) 0 0
\(43\) 0.205281 + 0.355557i 0.0313051 + 0.0542220i 0.881253 0.472644i \(-0.156700\pi\)
−0.849948 + 0.526866i \(0.823367\pi\)
\(44\) 0 0
\(45\) 1.37458 1.90568i 0.204911 0.284083i
\(46\) 0 0
\(47\) −1.33708 2.31588i −0.195033 0.337806i 0.751879 0.659302i \(-0.229148\pi\)
−0.946911 + 0.321495i \(0.895815\pi\)
\(48\) 0 0
\(49\) 2.14341 3.71249i 0.306201 0.530356i
\(50\) 0 0
\(51\) −0.575607 + 11.3564i −0.0806011 + 1.59021i
\(52\) 0 0
\(53\) −5.61642 −0.771475 −0.385738 0.922609i \(-0.626053\pi\)
−0.385738 + 0.922609i \(0.626053\pi\)
\(54\) 0 0
\(55\) 0.710545 0.0958099
\(56\) 0 0
\(57\) −0.108663 + 2.14385i −0.0143927 + 0.283960i
\(58\) 0 0
\(59\) −3.14465 + 5.44669i −0.409398 + 0.709098i −0.994822 0.101629i \(-0.967595\pi\)
0.585424 + 0.810727i \(0.300928\pi\)
\(60\) 0 0
\(61\) 0.786600 + 1.36243i 0.100714 + 0.174441i 0.911979 0.410237i \(-0.134554\pi\)
−0.811265 + 0.584678i \(0.801221\pi\)
\(62\) 0 0
\(63\) 2.02539 + 4.50738i 0.255175 + 0.567876i
\(64\) 0 0
\(65\) −0.391618 0.678302i −0.0485742 0.0841330i
\(66\) 0 0
\(67\) 6.75497 11.7000i 0.825251 1.42938i −0.0764757 0.997071i \(-0.524367\pi\)
0.901727 0.432306i \(-0.142300\pi\)
\(68\) 0 0
\(69\) −0.0911818 0.0589918i −0.0109770 0.00710178i
\(70\) 0 0
\(71\) −8.83191 −1.04815 −0.524077 0.851671i \(-0.675590\pi\)
−0.524077 + 0.851671i \(0.675590\pi\)
\(72\) 0 0
\(73\) 2.43859 0.285416 0.142708 0.989765i \(-0.454419\pi\)
0.142708 + 0.989765i \(0.454419\pi\)
\(74\) 0 0
\(75\) 6.76368 3.46091i 0.781002 0.399632i
\(76\) 0 0
\(77\) −0.747152 + 1.29411i −0.0851459 + 0.147477i
\(78\) 0 0
\(79\) 2.20211 + 3.81417i 0.247757 + 0.429128i 0.962903 0.269847i \(-0.0869732\pi\)
−0.715146 + 0.698975i \(0.753640\pi\)
\(80\) 0 0
\(81\) 8.81598 + 1.81069i 0.979553 + 0.201187i
\(82\) 0 0
\(83\) 5.96236 + 10.3271i 0.654454 + 1.13355i 0.982030 + 0.188722i \(0.0604347\pi\)
−0.327577 + 0.944825i \(0.606232\pi\)
\(84\) 0 0
\(85\) 2.57098 4.45307i 0.278862 0.483003i
\(86\) 0 0
\(87\) −7.94911 + 4.06749i −0.852234 + 0.436080i
\(88\) 0 0
\(89\) −11.6219 −1.23192 −0.615961 0.787777i \(-0.711232\pi\)
−0.615961 + 0.787777i \(0.711232\pi\)
\(90\) 0 0
\(91\) 1.64717 0.172671
\(92\) 0 0
\(93\) −2.28870 1.48072i −0.237327 0.153543i
\(94\) 0 0
\(95\) 0.485347 0.840646i 0.0497956 0.0862485i
\(96\) 0 0
\(97\) −1.23743 2.14329i −0.125642 0.217618i 0.796342 0.604847i \(-0.206766\pi\)
−0.921984 + 0.387229i \(0.873432\pi\)
\(98\) 0 0
\(99\) 1.11550 + 2.48247i 0.112112 + 0.249497i
\(100\) 0 0
\(101\) −3.08962 5.35138i −0.307429 0.532482i 0.670370 0.742027i \(-0.266135\pi\)
−0.977799 + 0.209544i \(0.932802\pi\)
\(102\) 0 0
\(103\) −2.99527 + 5.18796i −0.295133 + 0.511185i −0.975016 0.222136i \(-0.928697\pi\)
0.679883 + 0.733321i \(0.262031\pi\)
\(104\) 0 0
\(105\) 0.113115 2.23170i 0.0110389 0.217791i
\(106\) 0 0
\(107\) 0.0906932 0.00876764 0.00438382 0.999990i \(-0.498605\pi\)
0.00438382 + 0.999990i \(0.498605\pi\)
\(108\) 0 0
\(109\) −0.344120 −0.0329607 −0.0164804 0.999864i \(-0.505246\pi\)
−0.0164804 + 0.999864i \(0.505246\pi\)
\(110\) 0 0
\(111\) −0.792982 + 15.6450i −0.0752665 + 1.48496i
\(112\) 0 0
\(113\) −3.40706 + 5.90120i −0.320509 + 0.555138i −0.980593 0.196054i \(-0.937187\pi\)
0.660084 + 0.751192i \(0.270521\pi\)
\(114\) 0 0
\(115\) 0.0245547 + 0.0425300i 0.00228974 + 0.00396595i
\(116\) 0 0
\(117\) 1.75501 2.43309i 0.162251 0.224940i
\(118\) 0 0
\(119\) 5.40687 + 9.36498i 0.495647 + 0.858486i
\(120\) 0 0
\(121\) 5.08850 8.81354i 0.462591 0.801231i
\(122\) 0 0
\(123\) 7.28815 + 4.71521i 0.657151 + 0.425156i
\(124\) 0 0
\(125\) −7.35187 −0.657571
\(126\) 0 0
\(127\) −2.71040 −0.240509 −0.120254 0.992743i \(-0.538371\pi\)
−0.120254 + 0.992743i \(0.538371\pi\)
\(128\) 0 0
\(129\) 0.633053 0.323927i 0.0557372 0.0285202i
\(130\) 0 0
\(131\) 9.92814 17.1960i 0.867425 1.50242i 0.00280673 0.999996i \(-0.499107\pi\)
0.864619 0.502429i \(-0.167560\pi\)
\(132\) 0 0
\(133\) 1.02070 + 1.76791i 0.0885063 + 0.153297i
\(134\) 0 0
\(135\) −3.17599 2.54488i −0.273346 0.219029i
\(136\) 0 0
\(137\) −3.89365 6.74400i −0.332657 0.576179i 0.650375 0.759613i \(-0.274612\pi\)
−0.983032 + 0.183434i \(0.941279\pi\)
\(138\) 0 0
\(139\) 11.3241 19.6139i 0.960496 1.66363i 0.239239 0.970961i \(-0.423102\pi\)
0.721257 0.692667i \(-0.243564\pi\)
\(140\) 0 0
\(141\) −4.12332 + 2.10986i −0.347246 + 0.177683i
\(142\) 0 0
\(143\) 0.907192 0.0758632
\(144\) 0 0
\(145\) 4.03785 0.335325
\(146\) 0 0
\(147\) −6.23405 4.03324i −0.514176 0.332656i
\(148\) 0 0
\(149\) 4.55163 7.88365i 0.372884 0.645854i −0.617124 0.786866i \(-0.711702\pi\)
0.990008 + 0.141012i \(0.0450357\pi\)
\(150\) 0 0
\(151\) −11.4156 19.7723i −0.928985 1.60905i −0.785023 0.619467i \(-0.787349\pi\)
−0.143962 0.989583i \(-0.545984\pi\)
\(152\) 0 0
\(153\) 19.5941 + 1.99141i 1.58409 + 0.160996i
\(154\) 0 0
\(155\) 0.616333 + 1.06752i 0.0495051 + 0.0857453i
\(156\) 0 0
\(157\) 6.16187 10.6727i 0.491770 0.851771i −0.508185 0.861248i \(-0.669683\pi\)
0.999955 + 0.00947673i \(0.00301658\pi\)
\(158\) 0 0
\(159\) −0.492436 + 9.71546i −0.0390527 + 0.770486i
\(160\) 0 0
\(161\) −0.103279 −0.00813953
\(162\) 0 0
\(163\) 3.95905 0.310097 0.155048 0.987907i \(-0.450447\pi\)
0.155048 + 0.987907i \(0.450447\pi\)
\(164\) 0 0
\(165\) 0.0622990 1.22912i 0.00484997 0.0956870i
\(166\) 0 0
\(167\) −5.16495 + 8.94596i −0.399676 + 0.692259i −0.993686 0.112198i \(-0.964211\pi\)
0.594010 + 0.804458i \(0.297544\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 0 0
\(171\) 3.69897 + 0.375936i 0.282867 + 0.0287485i
\(172\) 0 0
\(173\) −12.2845 21.2773i −0.933971 1.61769i −0.776458 0.630169i \(-0.782986\pi\)
−0.157513 0.987517i \(-0.550348\pi\)
\(174\) 0 0
\(175\) 3.61270 6.25738i 0.273094 0.473013i
\(176\) 0 0
\(177\) 9.14613 + 5.91726i 0.687465 + 0.444768i
\(178\) 0 0
\(179\) 11.3281 0.846698 0.423349 0.905967i \(-0.360854\pi\)
0.423349 + 0.905967i \(0.360854\pi\)
\(180\) 0 0
\(181\) 13.3886 0.995169 0.497584 0.867416i \(-0.334220\pi\)
0.497584 + 0.867416i \(0.334220\pi\)
\(182\) 0 0
\(183\) 2.42574 1.24123i 0.179316 0.0917543i
\(184\) 0 0
\(185\) 3.54189 6.13474i 0.260405 0.451035i
\(186\) 0 0
\(187\) 2.97787 + 5.15782i 0.217763 + 0.377177i
\(188\) 0 0
\(189\) 7.97458 3.10839i 0.580065 0.226102i
\(190\) 0 0
\(191\) −3.99635 6.92189i −0.289166 0.500850i 0.684445 0.729065i \(-0.260045\pi\)
−0.973611 + 0.228214i \(0.926711\pi\)
\(192\) 0 0
\(193\) −7.50754 + 13.0034i −0.540404 + 0.936008i 0.458476 + 0.888707i \(0.348395\pi\)
−0.998881 + 0.0473010i \(0.984938\pi\)
\(194\) 0 0
\(195\) −1.20768 + 0.617960i −0.0864840 + 0.0442530i
\(196\) 0 0
\(197\) −0.883876 −0.0629736 −0.0314868 0.999504i \(-0.510024\pi\)
−0.0314868 + 0.999504i \(0.510024\pi\)
\(198\) 0 0
\(199\) −5.65447 −0.400835 −0.200417 0.979711i \(-0.564230\pi\)
−0.200417 + 0.979711i \(0.564230\pi\)
\(200\) 0 0
\(201\) −19.6467 12.7108i −1.38577 0.896550i
\(202\) 0 0
\(203\) −4.24588 + 7.35408i −0.298002 + 0.516155i
\(204\) 0 0
\(205\) −1.96266 3.39942i −0.137078 0.237426i
\(206\) 0 0
\(207\) −0.110040 + 0.152557i −0.00764834 + 0.0106034i
\(208\) 0 0
\(209\) 0.562160 + 0.973690i 0.0388854 + 0.0673515i
\(210\) 0 0
\(211\) 7.28894 12.6248i 0.501791 0.869128i −0.498207 0.867058i \(-0.666008\pi\)
0.999998 0.00206963i \(-0.000658783\pi\)
\(212\) 0 0
\(213\) −0.774362 + 15.2777i −0.0530584 + 1.04681i
\(214\) 0 0
\(215\) −0.321567 −0.0219307
\(216\) 0 0
\(217\) −2.59235 −0.175980
\(218\) 0 0
\(219\) 0.213810 4.21835i 0.0144480 0.285050i
\(220\) 0 0
\(221\) 3.28251 5.68548i 0.220806 0.382447i
\(222\) 0 0
\(223\) 8.84781 + 15.3249i 0.592493 + 1.02623i 0.993895 + 0.110327i \(0.0351897\pi\)
−0.401402 + 0.915902i \(0.631477\pi\)
\(224\) 0 0
\(225\) −5.39376 12.0035i −0.359584 0.800231i
\(226\) 0 0
\(227\) −1.77180 3.06885i −0.117599 0.203687i 0.801217 0.598374i \(-0.204186\pi\)
−0.918816 + 0.394687i \(0.870853\pi\)
\(228\) 0 0
\(229\) 1.06782 1.84951i 0.0705634 0.122219i −0.828585 0.559863i \(-0.810854\pi\)
0.899148 + 0.437644i \(0.144187\pi\)
\(230\) 0 0
\(231\) 2.17307 + 1.40591i 0.142978 + 0.0925021i
\(232\) 0 0
\(233\) −1.87149 −0.122606 −0.0613028 0.998119i \(-0.519526\pi\)
−0.0613028 + 0.998119i \(0.519526\pi\)
\(234\) 0 0
\(235\) 2.09449 0.136630
\(236\) 0 0
\(237\) 6.79094 3.47486i 0.441119 0.225717i
\(238\) 0 0
\(239\) 7.88260 13.6531i 0.509883 0.883144i −0.490051 0.871694i \(-0.663022\pi\)
0.999934 0.0114499i \(-0.00364471\pi\)
\(240\) 0 0
\(241\) 13.9202 + 24.1105i 0.896678 + 1.55309i 0.831715 + 0.555203i \(0.187360\pi\)
0.0649628 + 0.997888i \(0.479307\pi\)
\(242\) 0 0
\(243\) 3.90514 15.0914i 0.250515 0.968113i
\(244\) 0 0
\(245\) 1.67879 + 2.90775i 0.107254 + 0.185770i
\(246\) 0 0
\(247\) 0.619670 1.07330i 0.0394287 0.0682924i
\(248\) 0 0
\(249\) 18.3869 9.40841i 1.16522 0.596234i
\(250\) 0 0
\(251\) 6.37044 0.402099 0.201049 0.979581i \(-0.435565\pi\)
0.201049 + 0.979581i \(0.435565\pi\)
\(252\) 0 0
\(253\) −0.0568816 −0.00357612
\(254\) 0 0
\(255\) −7.47763 4.83779i −0.468268 0.302954i
\(256\) 0 0
\(257\) −13.5076 + 23.3958i −0.842579 + 1.45939i 0.0451291 + 0.998981i \(0.485630\pi\)
−0.887708 + 0.460408i \(0.847703\pi\)
\(258\) 0 0
\(259\) 7.44874 + 12.9016i 0.462842 + 0.801666i
\(260\) 0 0
\(261\) 6.33910 + 14.1072i 0.392380 + 0.873216i
\(262\) 0 0
\(263\) −4.53371 7.85262i −0.279561 0.484213i 0.691715 0.722171i \(-0.256855\pi\)
−0.971276 + 0.237957i \(0.923522\pi\)
\(264\) 0 0
\(265\) 2.19949 3.80963i 0.135114 0.234024i
\(266\) 0 0
\(267\) −1.01899 + 20.1040i −0.0623609 + 1.23034i
\(268\) 0 0
\(269\) 13.3977 0.816871 0.408435 0.912787i \(-0.366075\pi\)
0.408435 + 0.912787i \(0.366075\pi\)
\(270\) 0 0
\(271\) 0.397183 0.0241271 0.0120636 0.999927i \(-0.496160\pi\)
0.0120636 + 0.999927i \(0.496160\pi\)
\(272\) 0 0
\(273\) 0.144421 2.84933i 0.00874073 0.172449i
\(274\) 0 0
\(275\) 1.98972 3.44629i 0.119985 0.207819i
\(276\) 0 0
\(277\) −3.60417 6.24260i −0.216553 0.375081i 0.737199 0.675676i \(-0.236148\pi\)
−0.953752 + 0.300595i \(0.902815\pi\)
\(278\) 0 0
\(279\) −2.76206 + 3.82924i −0.165360 + 0.229250i
\(280\) 0 0
\(281\) 9.09016 + 15.7446i 0.542274 + 0.939245i 0.998773 + 0.0495217i \(0.0157697\pi\)
−0.456499 + 0.889724i \(0.650897\pi\)
\(282\) 0 0
\(283\) 11.4890 19.8995i 0.682950 1.18290i −0.291126 0.956685i \(-0.594030\pi\)
0.974076 0.226220i \(-0.0726367\pi\)
\(284\) 0 0
\(285\) −1.41162 0.913275i −0.0836172 0.0540977i
\(286\) 0 0
\(287\) 8.25509 0.487282
\(288\) 0 0
\(289\) 26.0996 1.53527
\(290\) 0 0
\(291\) −3.81602 + 1.95262i −0.223699 + 0.114465i
\(292\) 0 0
\(293\) −12.3080 + 21.3181i −0.719041 + 1.24542i 0.242339 + 0.970192i \(0.422085\pi\)
−0.961380 + 0.275224i \(0.911248\pi\)
\(294\) 0 0
\(295\) −2.46300 4.26604i −0.143401 0.248378i
\(296\) 0 0
\(297\) 4.39205 1.71197i 0.254853 0.0993383i
\(298\) 0 0
\(299\) 0.0313504 + 0.0543004i 0.00181304 + 0.00314028i
\(300\) 0 0
\(301\) 0.338134 0.585665i 0.0194897 0.0337572i
\(302\) 0 0
\(303\) −9.52787 + 4.87532i −0.547362 + 0.280080i
\(304\) 0 0
\(305\) −1.23219 −0.0705548
\(306\) 0 0
\(307\) −18.2640 −1.04238 −0.521191 0.853440i \(-0.674512\pi\)
−0.521191 + 0.853440i \(0.674512\pi\)
\(308\) 0 0
\(309\) 8.71167 + 5.63618i 0.495590 + 0.320631i
\(310\) 0 0
\(311\) −5.13363 + 8.89171i −0.291102 + 0.504203i −0.974070 0.226245i \(-0.927355\pi\)
0.682969 + 0.730447i \(0.260688\pi\)
\(312\) 0 0
\(313\) 10.6619 + 18.4669i 0.602646 + 1.04381i 0.992419 + 0.122902i \(0.0392201\pi\)
−0.389773 + 0.920911i \(0.627447\pi\)
\(314\) 0 0
\(315\) −3.85054 0.391341i −0.216953 0.0220495i
\(316\) 0 0
\(317\) −11.7713 20.3886i −0.661145 1.14514i −0.980315 0.197439i \(-0.936738\pi\)
0.319171 0.947697i \(-0.396596\pi\)
\(318\) 0 0
\(319\) −2.33845 + 4.05031i −0.130928 + 0.226774i
\(320\) 0 0
\(321\) 0.00795178 0.156884i 0.000443825 0.00875640i
\(322\) 0 0
\(323\) 8.13630 0.452716
\(324\) 0 0
\(325\) −4.38654 −0.243322
\(326\) 0 0
\(327\) −0.0301717 + 0.595269i −0.00166850 + 0.0329185i
\(328\) 0 0
\(329\) −2.20240 + 3.81467i −0.121422 + 0.210309i
\(330\) 0 0
\(331\) −6.60197 11.4349i −0.362877 0.628521i 0.625556 0.780179i \(-0.284872\pi\)
−0.988433 + 0.151658i \(0.951539\pi\)
\(332\) 0 0
\(333\) 26.9937 + 2.74345i 1.47925 + 0.150340i
\(334\) 0 0
\(335\) 5.29073 + 9.16382i 0.289064 + 0.500673i
\(336\) 0 0
\(337\) −9.78511 + 16.9483i −0.533029 + 0.923233i 0.466227 + 0.884665i \(0.345613\pi\)
−0.999256 + 0.0385678i \(0.987720\pi\)
\(338\) 0 0
\(339\) 9.90934 + 6.41103i 0.538202 + 0.348200i
\(340\) 0 0
\(341\) −1.42775 −0.0773171
\(342\) 0 0
\(343\) −18.5914 −1.00384
\(344\) 0 0
\(345\) 0.0757226 0.0387466i 0.00407677 0.00208604i
\(346\) 0 0
\(347\) 11.4262 19.7908i 0.613392 1.06243i −0.377272 0.926102i \(-0.623138\pi\)
0.990664 0.136324i \(-0.0435288\pi\)
\(348\) 0 0
\(349\) 3.12860 + 5.41890i 0.167470 + 0.290067i 0.937530 0.347905i \(-0.113107\pi\)
−0.770059 + 0.637972i \(0.779773\pi\)
\(350\) 0 0
\(351\) −4.05496 3.24920i −0.216438 0.173429i
\(352\) 0 0
\(353\) 4.99749 + 8.65590i 0.265989 + 0.460707i 0.967822 0.251634i \(-0.0809681\pi\)
−0.701833 + 0.712342i \(0.747635\pi\)
\(354\) 0 0
\(355\) 3.45873 5.99070i 0.183570 0.317953i
\(356\) 0 0
\(357\) 16.6739 8.53187i 0.882475 0.451554i
\(358\) 0 0
\(359\) −20.8670 −1.10132 −0.550658 0.834731i \(-0.685623\pi\)
−0.550658 + 0.834731i \(0.685623\pi\)
\(360\) 0 0
\(361\) −17.4640 −0.919160
\(362\) 0 0
\(363\) −14.7998 9.57500i −0.776787 0.502557i
\(364\) 0 0
\(365\) −0.954996 + 1.65410i −0.0499868 + 0.0865796i
\(366\) 0 0
\(367\) −7.87705 13.6434i −0.411179 0.712182i 0.583840 0.811869i \(-0.301549\pi\)
−0.995019 + 0.0996863i \(0.968216\pi\)
\(368\) 0 0
\(369\) 8.79552 12.1938i 0.457876 0.634786i
\(370\) 0 0
\(371\) 4.62562 + 8.01180i 0.240150 + 0.415952i
\(372\) 0 0
\(373\) −14.9651 + 25.9204i −0.774865 + 1.34211i 0.160006 + 0.987116i \(0.448849\pi\)
−0.934871 + 0.354989i \(0.884485\pi\)
\(374\) 0 0
\(375\) −0.644596 + 12.7175i −0.0332868 + 0.656728i
\(376\) 0 0
\(377\) 5.15535 0.265514
\(378\) 0 0
\(379\) −19.3193 −0.992365 −0.496183 0.868218i \(-0.665265\pi\)
−0.496183 + 0.868218i \(0.665265\pi\)
\(380\) 0 0
\(381\) −0.237642 + 4.68853i −0.0121748 + 0.240201i
\(382\) 0 0
\(383\) 7.62165 13.2011i 0.389448 0.674544i −0.602927 0.797796i \(-0.705999\pi\)
0.992375 + 0.123252i \(0.0393325\pi\)
\(384\) 0 0
\(385\) −0.585196 1.01359i −0.0298243 0.0516573i
\(386\) 0 0
\(387\) −0.504834 1.12347i −0.0256622 0.0571094i
\(388\) 0 0
\(389\) 9.49426 + 16.4445i 0.481378 + 0.833771i 0.999772 0.0213711i \(-0.00680316\pi\)
−0.518394 + 0.855142i \(0.673470\pi\)
\(390\) 0 0
\(391\) −0.205816 + 0.356484i −0.0104086 + 0.0180282i
\(392\) 0 0
\(393\) −28.8757 18.6817i −1.45659 0.942367i
\(394\) 0 0
\(395\) −3.44954 −0.173565
\(396\) 0 0
\(397\) −25.4889 −1.27925 −0.639626 0.768686i \(-0.720911\pi\)
−0.639626 + 0.768686i \(0.720911\pi\)
\(398\) 0 0
\(399\) 3.14768 1.61064i 0.157581 0.0806328i
\(400\) 0 0
\(401\) −7.28076 + 12.6106i −0.363584 + 0.629746i −0.988548 0.150908i \(-0.951780\pi\)
0.624964 + 0.780654i \(0.285114\pi\)
\(402\) 0 0
\(403\) 0.786907 + 1.36296i 0.0391986 + 0.0678940i
\(404\) 0 0
\(405\) −4.68068 + 5.27079i −0.232585 + 0.261908i
\(406\) 0 0
\(407\) 4.10244 + 7.10564i 0.203351 + 0.352214i
\(408\) 0 0
\(409\) 13.3650 23.1489i 0.660857 1.14464i −0.319533 0.947575i \(-0.603526\pi\)
0.980391 0.197063i \(-0.0631405\pi\)
\(410\) 0 0
\(411\) −12.0074 + 6.14406i −0.592280 + 0.303064i
\(412\) 0 0
\(413\) 10.3596 0.509761
\(414\) 0 0
\(415\) −9.33986 −0.458476
\(416\) 0 0
\(417\) −32.9358 21.3084i −1.61287 1.04348i
\(418\) 0 0
\(419\) 14.6383 25.3544i 0.715130 1.23864i −0.247779 0.968816i \(-0.579701\pi\)
0.962909 0.269825i \(-0.0869658\pi\)
\(420\) 0 0
\(421\) 16.8068 + 29.1102i 0.819111 + 1.41874i 0.906338 + 0.422554i \(0.138866\pi\)
−0.0872266 + 0.996188i \(0.527800\pi\)
\(422\) 0 0
\(423\) 3.28818 + 7.31763i 0.159877 + 0.355795i
\(424\) 0 0
\(425\) −14.3989 24.9396i −0.698448 1.20975i
\(426\) 0 0
\(427\) 1.29567 2.24416i 0.0627017 0.108603i
\(428\) 0 0
\(429\) 0.0795406 1.56929i 0.00384026 0.0757660i
\(430\) 0 0
\(431\) −25.7404 −1.23987 −0.619935 0.784653i \(-0.712841\pi\)
−0.619935 + 0.784653i \(0.712841\pi\)
\(432\) 0 0
\(433\) 2.97400 0.142921 0.0714607 0.997443i \(-0.477234\pi\)
0.0714607 + 0.997443i \(0.477234\pi\)
\(434\) 0 0
\(435\) 0.354030 6.98480i 0.0169744 0.334895i
\(436\) 0 0
\(437\) −0.0388538 + 0.0672967i −0.00185863 + 0.00321924i
\(438\) 0 0
\(439\) −3.78711 6.55947i −0.180749 0.313066i 0.761387 0.648298i \(-0.224519\pi\)
−0.942136 + 0.335231i \(0.891185\pi\)
\(440\) 0 0
\(441\) −7.52340 + 10.4302i −0.358257 + 0.496677i
\(442\) 0 0
\(443\) 2.35659 + 4.08174i 0.111965 + 0.193929i 0.916562 0.399891i \(-0.130952\pi\)
−0.804597 + 0.593821i \(0.797619\pi\)
\(444\) 0 0
\(445\) 4.55135 7.88318i 0.215755 0.373698i
\(446\) 0 0
\(447\) −13.2383 8.56476i −0.626150 0.405099i
\(448\) 0 0
\(449\) −5.95827 −0.281188 −0.140594 0.990067i \(-0.544901\pi\)
−0.140594 + 0.990067i \(0.544901\pi\)
\(450\) 0 0
\(451\) 4.54654 0.214088
\(452\) 0 0
\(453\) −35.2037 + 18.0134i −1.65401 + 0.846343i
\(454\) 0 0
\(455\) −0.645062 + 1.11728i −0.0302410 + 0.0523789i
\(456\) 0 0
\(457\) −4.39215 7.60743i −0.205456 0.355861i 0.744822 0.667263i \(-0.232534\pi\)
−0.950278 + 0.311403i \(0.899201\pi\)
\(458\) 0 0
\(459\) 5.16276 33.7199i 0.240977 1.57391i
\(460\) 0 0
\(461\) −7.22057 12.5064i −0.336295 0.582480i 0.647438 0.762119i \(-0.275841\pi\)
−0.983733 + 0.179638i \(0.942507\pi\)
\(462\) 0 0
\(463\) −4.95993 + 8.59085i −0.230507 + 0.399250i −0.957958 0.286910i \(-0.907372\pi\)
0.727450 + 0.686161i \(0.240705\pi\)
\(464\) 0 0
\(465\) 1.90067 0.972554i 0.0881414 0.0451011i
\(466\) 0 0
\(467\) 2.50545 0.115938 0.0579692 0.998318i \(-0.481537\pi\)
0.0579692 + 0.998318i \(0.481537\pi\)
\(468\) 0 0
\(469\) −22.2532 −1.02756
\(470\) 0 0
\(471\) −17.9216 11.5947i −0.825786 0.534257i
\(472\) 0 0
\(473\) 0.186230 0.322559i 0.00856284 0.0148313i
\(474\) 0 0
\(475\) −2.71821 4.70808i −0.124720 0.216021i
\(476\) 0 0
\(477\) 16.7629 + 1.70366i 0.767522 + 0.0780053i
\(478\) 0 0
\(479\) 16.8818 + 29.2402i 0.771350 + 1.33602i 0.936823 + 0.349803i \(0.113751\pi\)
−0.165474 + 0.986214i \(0.552915\pi\)
\(480\) 0 0
\(481\) 4.52213 7.83256i 0.206192 0.357134i
\(482\) 0 0
\(483\) −0.00905528 + 0.178655i −0.000412030 + 0.00812910i
\(484\) 0 0
\(485\) 1.93839 0.0880180
\(486\) 0 0
\(487\) −19.1173 −0.866289 −0.433144 0.901325i \(-0.642596\pi\)
−0.433144 + 0.901325i \(0.642596\pi\)
\(488\) 0 0
\(489\) 0.347121 6.84848i 0.0156973 0.309699i
\(490\) 0 0
\(491\) −17.0555 + 29.5410i −0.769703 + 1.33317i 0.168021 + 0.985783i \(0.446262\pi\)
−0.937724 + 0.347382i \(0.887071\pi\)
\(492\) 0 0
\(493\) 16.9225 + 29.3106i 0.762151 + 1.32008i
\(494\) 0 0
\(495\) −2.12071 0.215534i −0.0953189 0.00968751i
\(496\) 0 0
\(497\) 7.27384 + 12.5987i 0.326276 + 0.565127i
\(498\) 0 0
\(499\) −19.6950 + 34.1127i −0.881669 + 1.52710i −0.0321850 + 0.999482i \(0.510247\pi\)
−0.849484 + 0.527614i \(0.823087\pi\)
\(500\) 0 0
\(501\) 15.0221 + 9.71886i 0.671140 + 0.434207i
\(502\) 0 0
\(503\) 16.1236 0.718915 0.359458 0.933161i \(-0.382962\pi\)
0.359458 + 0.933161i \(0.382962\pi\)
\(504\) 0 0
\(505\) 4.83980 0.215368
\(506\) 0 0
\(507\) −1.54192 + 0.788984i −0.0684789 + 0.0350400i
\(508\) 0 0
\(509\) 1.21074 2.09706i 0.0536650 0.0929505i −0.837945 0.545755i \(-0.816243\pi\)
0.891610 + 0.452804i \(0.149576\pi\)
\(510\) 0 0
\(511\) −2.00839 3.47864i −0.0888461 0.153886i
\(512\) 0 0
\(513\) 0.974622 6.36562i 0.0430306 0.281049i
\(514\) 0 0
\(515\) −2.34600 4.06339i −0.103377 0.179055i
\(516\) 0 0
\(517\) −1.21299 + 2.10095i −0.0533470 + 0.0923998i
\(518\) 0 0
\(519\) −37.8832 + 19.3845i −1.66289 + 0.850885i
\(520\) 0 0
\(521\) −0.682475 −0.0298998 −0.0149499 0.999888i \(-0.504759\pi\)
−0.0149499 + 0.999888i \(0.504759\pi\)
\(522\) 0 0
\(523\) −14.6293 −0.639694 −0.319847 0.947469i \(-0.603632\pi\)
−0.319847 + 0.947469i \(0.603632\pi\)
\(524\) 0 0
\(525\) −10.5075 6.79799i −0.458583 0.296689i
\(526\) 0 0
\(527\) −5.16606 + 8.94789i −0.225037 + 0.389776i
\(528\) 0 0
\(529\) 11.4980 + 19.9152i 0.499915 + 0.865877i
\(530\) 0 0
\(531\) 11.0378 15.3024i 0.478998 0.664069i
\(532\) 0 0
\(533\) −2.50583 4.34023i −0.108540 0.187996i
\(534\) 0 0
\(535\) −0.0355171 + 0.0615173i −0.00153554 + 0.00265963i
\(536\) 0 0
\(537\) 0.993219 19.5956i 0.0428606 0.845613i
\(538\) 0 0
\(539\) −3.88897 −0.167510
\(540\) 0 0
\(541\) −2.04386 −0.0878726 −0.0439363 0.999034i \(-0.513990\pi\)
−0.0439363 + 0.999034i \(0.513990\pi\)
\(542\) 0 0
\(543\) 1.17389 23.1600i 0.0503762 0.993893i
\(544\) 0 0
\(545\) 0.134763 0.233417i 0.00577263 0.00999849i
\(546\) 0 0
\(547\) 2.16424 + 3.74857i 0.0925360 + 0.160277i 0.908578 0.417716i \(-0.137169\pi\)
−0.816042 + 0.577993i \(0.803836\pi\)
\(548\) 0 0
\(549\) −1.93443 4.30495i −0.0825596 0.183731i
\(550\) 0 0
\(551\) 3.19461 + 5.53323i 0.136095 + 0.235724i
\(552\) 0 0
\(553\) 3.62726 6.28260i 0.154247 0.267163i
\(554\) 0 0
\(555\) −10.3015 6.66476i −0.437275 0.282903i
\(556\) 0 0
\(557\) 22.3991 0.949080 0.474540 0.880234i \(-0.342615\pi\)
0.474540 + 0.880234i \(0.342615\pi\)
\(558\) 0 0
\(559\) −0.410562 −0.0173649
\(560\) 0 0
\(561\) 9.18325 4.69898i 0.387717 0.198391i
\(562\) 0 0
\(563\) 9.57770 16.5891i 0.403652 0.699146i −0.590511 0.807029i \(-0.701074\pi\)
0.994164 + 0.107883i \(0.0344073\pi\)
\(564\) 0 0
\(565\) −2.66853 4.62203i −0.112266 0.194450i
\(566\) 0 0
\(567\) −4.67779 14.0672i −0.196449 0.590767i
\(568\) 0 0
\(569\) 3.73147 + 6.46310i 0.156431 + 0.270947i 0.933579 0.358371i \(-0.116668\pi\)
−0.777148 + 0.629318i \(0.783334\pi\)
\(570\) 0 0
\(571\) −5.63821 + 9.76566i −0.235952 + 0.408680i −0.959549 0.281542i \(-0.909154\pi\)
0.723597 + 0.690223i \(0.242487\pi\)
\(572\) 0 0
\(573\) −12.3241 + 6.30612i −0.514846 + 0.263442i
\(574\) 0 0
\(575\) 0.275040 0.0114699
\(576\) 0 0
\(577\) −14.6801 −0.611139 −0.305569 0.952170i \(-0.598847\pi\)
−0.305569 + 0.952170i \(0.598847\pi\)
\(578\) 0 0
\(579\) 21.8355 + 14.1269i 0.907452 + 0.587093i
\(580\) 0 0
\(581\) 9.82104 17.0105i 0.407445 0.705716i
\(582\) 0 0
\(583\) 2.54759 + 4.41255i 0.105510 + 0.182749i
\(584\) 0 0
\(585\) 0.963079 + 2.14327i 0.0398184 + 0.0886132i
\(586\) 0 0
\(587\) 3.29463 + 5.70647i 0.135984 + 0.235531i 0.925973 0.377590i \(-0.123247\pi\)
−0.789989 + 0.613121i \(0.789914\pi\)
\(588\) 0 0
\(589\) −0.975245 + 1.68917i −0.0401843 + 0.0696012i
\(590\) 0 0
\(591\) −0.0774963 + 1.52896i −0.00318777 + 0.0628928i
\(592\) 0 0
\(593\) 16.7923 0.689577 0.344789 0.938680i \(-0.387951\pi\)
0.344789 + 0.938680i \(0.387951\pi\)
\(594\) 0 0
\(595\) −8.46970 −0.347224
\(596\) 0 0
\(597\) −0.495772 + 9.78128i −0.0202906 + 0.400321i
\(598\) 0 0
\(599\) 18.2838 31.6684i 0.747054 1.29394i −0.202175 0.979350i \(-0.564801\pi\)
0.949229 0.314586i \(-0.101866\pi\)
\(600\) 0 0
\(601\) 12.5056 + 21.6603i 0.510114 + 0.883543i 0.999931 + 0.0117182i \(0.00373010\pi\)
−0.489817 + 0.871825i \(0.662937\pi\)
\(602\) 0 0
\(603\) −23.7101 + 32.8710i −0.965549 + 1.33861i
\(604\) 0 0
\(605\) 3.98549 + 6.90308i 0.162033 + 0.280650i
\(606\) 0 0
\(607\) −8.40051 + 14.5501i −0.340966 + 0.590571i −0.984612 0.174752i \(-0.944088\pi\)
0.643646 + 0.765323i \(0.277421\pi\)
\(608\) 0 0
\(609\) 12.3490 + 7.98944i 0.500408 + 0.323748i
\(610\) 0 0
\(611\) 2.67415 0.108185
\(612\) 0 0
\(613\) −23.6467 −0.955080 −0.477540 0.878610i \(-0.658471\pi\)
−0.477540 + 0.878610i \(0.658471\pi\)
\(614\) 0 0
\(615\) −6.05250 + 3.09701i −0.244060 + 0.124883i
\(616\) 0 0
\(617\) 0.438019 0.758671i 0.0176340 0.0305429i −0.857074 0.515194i \(-0.827720\pi\)
0.874708 + 0.484651i \(0.161053\pi\)
\(618\) 0 0
\(619\) −4.52703 7.84105i −0.181957 0.315158i 0.760590 0.649232i \(-0.224910\pi\)
−0.942547 + 0.334074i \(0.891576\pi\)
\(620\) 0 0
\(621\) 0.254249 + 0.203727i 0.0102027 + 0.00817528i
\(622\) 0 0
\(623\) 9.57167 + 16.5786i 0.383481 + 0.664209i
\(624\) 0 0
\(625\) −8.08723 + 14.0075i −0.323489 + 0.560300i
\(626\) 0 0
\(627\) 1.73361 0.887070i 0.0692336 0.0354262i
\(628\) 0 0
\(629\) 59.3758 2.36747
\(630\) 0 0
\(631\) −32.2900 −1.28544 −0.642722 0.766100i \(-0.722195\pi\)
−0.642722 + 0.766100i \(0.722195\pi\)
\(632\) 0 0
\(633\) −21.1997 13.7155i −0.842613 0.545144i
\(634\) 0 0
\(635\) 1.06144 1.83847i 0.0421220 0.0729574i
\(636\) 0 0
\(637\) 2.14341 + 3.71249i 0.0849249 + 0.147094i
\(638\) 0 0
\(639\) 26.3599 + 2.67903i 1.04278 + 0.105981i
\(640\) 0 0
\(641\) −12.6305 21.8767i −0.498876 0.864078i 0.501123 0.865376i \(-0.332920\pi\)
−0.999999 + 0.00129777i \(0.999587\pi\)
\(642\) 0 0
\(643\) −5.26799 + 9.12443i −0.207749 + 0.359833i −0.951005 0.309175i \(-0.899947\pi\)
0.743256 + 0.669007i \(0.233281\pi\)
\(644\) 0 0
\(645\) −0.0281943 + 0.556256i −0.00111015 + 0.0219026i
\(646\) 0 0
\(647\) −40.2888 −1.58392 −0.791958 0.610576i \(-0.790938\pi\)
−0.791958 + 0.610576i \(0.790938\pi\)
\(648\) 0 0
\(649\) 5.70560 0.223964
\(650\) 0 0
\(651\) −0.227291 + 4.48432i −0.00890825 + 0.175754i
\(652\) 0 0
\(653\) −17.9808 + 31.1437i −0.703643 + 1.21875i 0.263536 + 0.964650i \(0.415111\pi\)
−0.967179 + 0.254096i \(0.918222\pi\)
\(654\) 0 0
\(655\) 7.77607 + 13.4685i 0.303836 + 0.526260i
\(656\) 0 0
\(657\) −7.27828 0.739711i −0.283953 0.0288589i
\(658\) 0 0
\(659\) −6.04085 10.4631i −0.235318 0.407583i 0.724047 0.689751i \(-0.242280\pi\)
−0.959365 + 0.282168i \(0.908946\pi\)
\(660\) 0 0
\(661\) −14.3989 + 24.9397i −0.560054 + 0.970042i 0.437437 + 0.899249i \(0.355886\pi\)
−0.997491 + 0.0707927i \(0.977447\pi\)
\(662\) 0 0
\(663\) −9.54711 6.17668i −0.370779 0.239882i
\(664\) 0 0
\(665\) −1.59890 −0.0620028
\(666\) 0 0
\(667\) −0.323244 −0.0125161
\(668\) 0 0
\(669\) 27.2852 13.9616i 1.05491 0.539785i
\(670\) 0 0
\(671\) 0.713598 1.23599i 0.0275481 0.0477148i
\(672\) 0 0
\(673\) −17.0876 29.5966i −0.658680 1.14087i −0.980958 0.194222i \(-0.937782\pi\)
0.322278 0.946645i \(-0.395551\pi\)
\(674\) 0 0
\(675\) −21.2369 + 8.27786i −0.817407 + 0.318615i
\(676\) 0 0
\(677\) 2.57282 + 4.45626i 0.0988815 + 0.171268i 0.911222 0.411916i \(-0.135140\pi\)
−0.812340 + 0.583184i \(0.801807\pi\)
\(678\) 0 0
\(679\) −2.03826 + 3.53037i −0.0782212 + 0.135483i
\(680\) 0 0
\(681\) −5.46394 + 2.79584i −0.209378 + 0.107137i
\(682\) 0 0
\(683\) 18.3466 0.702013 0.351007 0.936373i \(-0.385839\pi\)
0.351007 + 0.936373i \(0.385839\pi\)
\(684\) 0 0
\(685\) 6.09929 0.233042
\(686\) 0 0
\(687\) −3.10572 2.00930i −0.118491 0.0766598i
\(688\) 0 0
\(689\) 2.80821 4.86397i 0.106984 0.185302i
\(690\) 0 0
\(691\) 15.0012 + 25.9828i 0.570671 + 0.988431i 0.996497 + 0.0836261i \(0.0266501\pi\)
−0.425826 + 0.904805i \(0.640017\pi\)
\(692\) 0 0
\(693\) 2.62252 3.63578i 0.0996212 0.138112i
\(694\) 0 0
\(695\) 8.86942 + 15.3623i 0.336436 + 0.582725i
\(696\) 0 0
\(697\) 16.4509 28.4937i 0.623121 1.07928i
\(698\) 0 0
\(699\) −0.164089 + 3.23737i −0.00620640 + 0.122448i
\(700\) 0 0
\(701\) 39.4795 1.49112 0.745559 0.666439i \(-0.232182\pi\)
0.745559 + 0.666439i \(0.232182\pi\)
\(702\) 0 0
\(703\) 11.2089 0.422753
\(704\) 0 0
\(705\) 0.183640 3.62311i 0.00691630 0.136454i
\(706\) 0 0
\(707\) −5.08915 + 8.81466i −0.191397 + 0.331509i
\(708\) 0 0
\(709\) −9.70645 16.8121i −0.364533 0.631390i 0.624168 0.781290i \(-0.285438\pi\)
−0.988701 + 0.149900i \(0.952105\pi\)
\(710\) 0 0
\(711\) −5.41551 12.0518i −0.203097 0.451980i
\(712\) 0 0
\(713\) −0.0493397 0.0854588i −0.00184779 0.00320046i
\(714\) 0 0
\(715\) −0.355273 + 0.615350i −0.0132864 + 0.0230128i
\(716\) 0 0
\(717\) −22.9264 14.8326i −0.856201 0.553935i
\(718\) 0 0
\(719\) 9.22733 0.344121 0.172061 0.985086i \(-0.444957\pi\)
0.172061 + 0.985086i \(0.444957\pi\)
\(720\) 0 0
\(721\) 9.86747 0.367484
\(722\) 0 0
\(723\) 42.9275 21.9656i 1.59649 0.816909i
\(724\) 0 0
\(725\) 11.3071 19.5844i 0.419934 0.727347i
\(726\) 0 0
\(727\) 23.8975 + 41.3916i 0.886308 + 1.53513i 0.844207 + 0.536017i \(0.180072\pi\)
0.0421009 + 0.999113i \(0.486595\pi\)
\(728\) 0 0
\(729\) −25.7631 8.07842i −0.954190 0.299201i
\(730\) 0 0
\(731\) −1.34768 2.33424i −0.0498456 0.0863351i
\(732\) 0 0
\(733\) −12.8761 + 22.3021i −0.475591 + 0.823748i −0.999609 0.0279595i \(-0.991099\pi\)
0.524018 + 0.851707i \(0.324432\pi\)
\(734\) 0 0
\(735\) 5.17712 2.64908i 0.190961 0.0977128i
\(736\) 0 0
\(737\) −12.2561 −0.451460
\(738\) 0 0
\(739\) 40.6762 1.49630 0.748148 0.663532i \(-0.230943\pi\)
0.748148 + 0.663532i \(0.230943\pi\)
\(740\) 0 0
\(741\) −1.80230 1.16603i −0.0662090 0.0428351i
\(742\) 0 0
\(743\) −2.95037 + 5.11019i −0.108239 + 0.187475i −0.915057 0.403325i \(-0.867854\pi\)
0.806818 + 0.590800i \(0.201188\pi\)
\(744\) 0 0
\(745\) 3.56499 + 6.17475i 0.130611 + 0.226225i
\(746\) 0 0
\(747\) −14.6628 32.6311i −0.536485 1.19391i
\(748\) 0 0
\(749\) −0.0746938 0.129373i −0.00272925 0.00472720i
\(750\) 0 0
\(751\) 21.2182 36.7511i 0.774264 1.34107i −0.160943 0.986964i \(-0.551453\pi\)
0.935207 0.354101i \(-0.115213\pi\)
\(752\) 0 0
\(753\) 0.558547 11.0198i 0.0203546 0.401583i
\(754\) 0 0
\(755\) 17.8821 0.650798
\(756\) 0 0
\(757\) −40.5212 −1.47277 −0.736384 0.676564i \(-0.763468\pi\)
−0.736384 + 0.676564i \(0.763468\pi\)
\(758\) 0 0
\(759\) −0.00498726 + 0.0983956i −0.000181026 + 0.00357153i
\(760\) 0 0
\(761\) −12.3039 + 21.3110i −0.446017 + 0.772524i −0.998122 0.0612501i \(-0.980491\pi\)
0.552105 + 0.833774i \(0.313825\pi\)
\(762\) 0 0
\(763\) 0.283413 + 0.490885i 0.0102602 + 0.0177712i
\(764\) 0 0
\(765\) −9.02419 + 12.5109i −0.326270 + 0.452331i
\(766\) 0 0
\(767\) −3.14465 5.44669i −0.113547 0.196669i
\(768\) 0 0
\(769\) 5.66189 9.80667i 0.204173 0.353638i −0.745696 0.666286i \(-0.767883\pi\)
0.949869 + 0.312649i \(0.101216\pi\)
\(770\) 0 0
\(771\) 39.2864 + 25.4171i 1.41487 + 0.915374i
\(772\) 0 0
\(773\) 44.3945 1.59676 0.798380 0.602154i \(-0.205690\pi\)
0.798380 + 0.602154i \(0.205690\pi\)
\(774\) 0 0
\(775\) 6.90360 0.247985
\(776\) 0 0
\(777\) 22.9707 11.7539i 0.824068 0.421668i
\(778\) 0 0
\(779\) 3.10558 5.37902i 0.111269 0.192723i
\(780\) 0 0
\(781\) 4.00612 + 6.93880i 0.143350 + 0.248290i
\(782\) 0 0
\(783\) 24.9589 9.72867i 0.891960 0.347674i
\(784\) 0 0
\(785\) 4.82619 + 8.35921i 0.172254 + 0.298353i
\(786\) 0 0
\(787\) −6.04833 + 10.4760i −0.215600 + 0.373429i −0.953458 0.301526i \(-0.902504\pi\)
0.737858 + 0.674956i \(0.235837\pi\)
\(788\) 0 0
\(789\) −13.9812 + 7.15405i −0.497744 + 0.254691i
\(790\) 0 0
\(791\) 11.2240 0.399081
\(792\) 0 0
\(793\) −1.57320 −0.0558660
\(794\) 0 0
\(795\) −6.39717 4.13877i −0.226884 0.146787i
\(796\) 0 0
\(797\) 9.30467 16.1162i 0.329588 0.570864i −0.652842 0.757494i \(-0.726423\pi\)
0.982430 + 0.186631i \(0.0597567\pi\)
\(798\) 0 0
\(799\) 8.77794 + 15.2038i 0.310541 + 0.537873i
\(800\) 0 0
\(801\) 34.6871 + 3.52534i 1.22561 + 0.124562i
\(802\) 0 0
\(803\) −1.10614 1.91588i −0.0390347 0.0676101i
\(804\) 0 0
\(805\) 0.0404459 0.0700544i 0.00142553 0.00246909i
\(806\) 0 0
\(807\) 1.17468 23.1757i 0.0413506 0.815823i
\(808\) 0 0
\(809\) −0.352346 −0.0123878 −0.00619392 0.999981i \(-0.501972\pi\)
−0.00619392 + 0.999981i \(0.501972\pi\)
\(810\) 0 0
\(811\) 49.6357 1.74295 0.871473 0.490444i \(-0.163165\pi\)
0.871473 + 0.490444i \(0.163165\pi\)
\(812\) 0 0
\(813\) 0.0348241 0.687059i 0.00122133 0.0240962i
\(814\) 0 0
\(815\) −1.55043 + 2.68543i −0.0543093 + 0.0940665i
\(816\) 0 0
\(817\) −0.254413 0.440657i −0.00890079 0.0154166i
\(818\) 0 0
\(819\) −4.91620 0.499646i −0.171786 0.0174591i
\(820\) 0 0
\(821\) −3.18105 5.50974i −0.111019 0.192291i 0.805162 0.593055i \(-0.202078\pi\)
−0.916182 + 0.400764i \(0.868745\pi\)
\(822\) 0 0
\(823\) 18.2846 31.6698i 0.637361 1.10394i −0.348649 0.937253i \(-0.613360\pi\)
0.986010 0.166688i \(-0.0533072\pi\)
\(824\) 0 0
\(825\) −5.78705 3.74404i −0.201479 0.130351i
\(826\) 0 0
\(827\) −15.3316 −0.533131 −0.266566 0.963817i \(-0.585889\pi\)
−0.266566 + 0.963817i \(0.585889\pi\)
\(828\) 0 0
\(829\) −51.8318 −1.80019 −0.900096 0.435692i \(-0.856504\pi\)
−0.900096 + 0.435692i \(0.856504\pi\)
\(830\) 0 0
\(831\) −11.1146 + 5.68726i −0.385563 + 0.197289i
\(832\) 0 0
\(833\) −14.0715 + 24.3726i −0.487550 + 0.844461i
\(834\) 0 0
\(835\) −4.04537 7.00679i −0.139996 0.242480i
\(836\) 0 0
\(837\) 6.38176 + 5.11363i 0.220586 + 0.176753i
\(838\) 0 0
\(839\) 25.7655 + 44.6271i 0.889522 + 1.54070i 0.840441 + 0.541903i \(0.182296\pi\)
0.0490810 + 0.998795i \(0.484371\pi\)
\(840\) 0 0
\(841\) 1.21120 2.09785i 0.0417654 0.0723397i
\(842\) 0 0
\(843\) 28.0325 14.3440i 0.965492 0.494033i
\(844\) 0 0
\(845\) 0.783235 0.0269441
\(846\) 0 0
\(847\) −16.7633 −0.575994
\(848\) 0 0
\(849\) −33.4155 21.6188i −1.14682 0.741954i
\(850\) 0 0
\(851\) −0.283541 + 0.491108i −0.00971967 + 0.0168350i
\(852\) 0 0
\(853\) −15.6483 27.1036i −0.535787 0.928010i −0.999125 0.0418283i \(-0.986682\pi\)
0.463338 0.886182i \(-0.346652\pi\)
\(854\) 0 0
\(855\) −1.70358 + 2.36179i −0.0582611 + 0.0807716i
\(856\) 0 0
\(857\) −5.95728 10.3183i −0.203497 0.352467i 0.746156 0.665771i \(-0.231897\pi\)
−0.949653 + 0.313305i \(0.898564\pi\)
\(858\) 0 0
\(859\) −11.5781 + 20.0538i −0.395038 + 0.684227i −0.993106 0.117219i \(-0.962602\pi\)
0.598068 + 0.801446i \(0.295935\pi\)
\(860\) 0 0
\(861\) 0.723788 14.2799i 0.0246666 0.486658i
\(862\) 0 0
\(863\) −33.0833 −1.12617 −0.563084 0.826400i \(-0.690385\pi\)
−0.563084 + 0.826400i \(0.690385\pi\)
\(864\) 0 0
\(865\) 19.2433 0.654291
\(866\) 0 0
\(867\) 2.28835 45.1478i 0.0777165 1.53330i
\(868\) 0 0
\(869\) 1.99774 3.46019i 0.0677687 0.117379i
\(870\) 0 0
\(871\) 6.75497 + 11.7000i 0.228884 + 0.396438i
\(872\) 0 0
\(873\) 3.04312 + 6.77227i 0.102994 + 0.229207i
\(874\) 0 0
\(875\) 6.05491 + 10.4874i 0.204693 + 0.354539i
\(876\) 0 0
\(877\) 12.3320 21.3596i 0.416421 0.721262i −0.579156 0.815217i \(-0.696618\pi\)
0.995576 + 0.0939551i \(0.0299510\pi\)
\(878\) 0 0
\(879\) 35.7975 + 23.1599i 1.20742 + 0.781163i
\(880\) 0 0
\(881\) −41.9696 −1.41399 −0.706996 0.707217i \(-0.749950\pi\)
−0.706996 + 0.707217i \(0.749950\pi\)
\(882\) 0 0
\(883\) −17.7822 −0.598418 −0.299209 0.954188i \(-0.596723\pi\)
−0.299209 + 0.954188i \(0.596723\pi\)
\(884\) 0 0
\(885\) −7.59547 + 3.88653i −0.255319 + 0.130644i
\(886\) 0 0
\(887\) 13.1573 22.7890i 0.441777 0.765181i −0.556044 0.831153i \(-0.687681\pi\)
0.997821 + 0.0659721i \(0.0210148\pi\)
\(888\) 0 0
\(889\) 2.23225 + 3.86637i 0.0748672 + 0.129674i
\(890\) 0 0
\(891\) −2.57632 7.74760i −0.0863101 0.259555i
\(892\) 0 0
\(893\) 1.65709 + 2.87017i 0.0554525 + 0.0960465i
\(894\) 0 0
\(895\) −4.43627 + 7.68384i −0.148288 + 0.256842i
\(896\) 0 0
\(897\) 0.0966793 0.0494699i 0.00322803 0.00165175i
\(898\) 0 0
\(899\) −8.11356 −0.270602
\(900\) 0 0
\(901\) 36.8720 1.22838
\(902\) 0 0
\(903\) −0.983454 0.636264i −0.0327273 0.0211735i
\(904\) 0 0
\(905\) −5.24322 + 9.08153i −0.174291 + 0.301880i
\(906\) 0 0
\(907\) −7.94116 13.7545i −0.263682 0.456710i 0.703536 0.710660i \(-0.251604\pi\)
−0.967217 + 0.253950i \(0.918270\pi\)
\(908\) 0 0
\(909\) 7.59810 + 16.9091i 0.252013 + 0.560838i
\(910\) 0 0
\(911\) −28.8078 49.8966i −0.954445 1.65315i −0.735633 0.677380i \(-0.763115\pi\)
−0.218812 0.975767i \(-0.570218\pi\)
\(912\) 0 0
\(913\) 5.40900 9.36867i 0.179012 0.310058i
\(914\) 0 0
\(915\) −0.108035 + 2.13147i −0.00357154 + 0.0704643i
\(916\) 0 0
\(917\) −32.7067 −1.08007
\(918\) 0 0
\(919\) 41.0937 1.35555 0.677777 0.735267i \(-0.262943\pi\)
0.677777 + 0.735267i \(0.262943\pi\)
\(920\) 0 0
\(921\) −1.60135 + 31.5936i −0.0527662 + 1.04105i
\(922\) 0 0
\(923\) 4.41595 7.64865i 0.145353 0.251759i
\(924\) 0 0
\(925\) −19.8365 34.3579i −0.652221 1.12968i
\(926\) 0 0
\(927\) 10.5135 14.5755i 0.345307 0.478724i
\(928\) 0 0
\(929\) −12.9823 22.4860i −0.425935 0.737740i 0.570573 0.821247i \(-0.306721\pi\)
−0.996507 + 0.0835069i \(0.973388\pi\)
\(930\) 0 0
\(931\) −2.65641 + 4.60104i −0.0870604 + 0.150793i
\(932\) 0 0
\(933\) 14.9310 + 9.65992i 0.488820 + 0.316252i
\(934\) 0 0
\(935\) −4.66475 −0.152554
\(936\) 0 0
\(937\) −2.82397 −0.0922549 −0.0461275 0.998936i \(-0.514688\pi\)
−0.0461275 + 0.998936i \(0.514688\pi\)
\(938\) 0 0
\(939\) 32.8795 16.8241i 1.07298 0.549034i
\(940\) 0 0
\(941\) 29.9326 51.8447i 0.975774 1.69009i 0.298416 0.954436i \(-0.403542\pi\)
0.677357 0.735654i \(-0.263125\pi\)
\(942\) 0 0
\(943\) 0.157118 + 0.272136i 0.00511645 + 0.00886196i
\(944\) 0 0
\(945\) −1.01456 + 6.62647i −0.0330036 + 0.215559i
\(946\) 0 0
\(947\) 1.75316 + 3.03656i 0.0569700 + 0.0986749i 0.893104 0.449850i \(-0.148523\pi\)
−0.836134 + 0.548525i \(0.815189\pi\)
\(948\) 0 0
\(949\) −1.21930 + 2.11188i −0.0395800 + 0.0685546i
\(950\) 0 0
\(951\) −36.3008 + 18.5748i −1.17714 + 0.602329i
\(952\) 0 0
\(953\) 46.8431 1.51740 0.758699 0.651442i \(-0.225835\pi\)
0.758699 + 0.651442i \(0.225835\pi\)
\(954\) 0 0
\(955\) 6.26017 0.202574
\(956\) 0 0
\(957\) 6.80131 + 4.40024i 0.219855 + 0.142239i
\(958\) 0 0
\(959\) −6.41352 + 11.1085i −0.207103 + 0.358714i
\(960\) 0 0
\(961\) 14.2616 + 24.7017i 0.460050 + 0.796830i
\(962\) 0 0
\(963\) −0.270685 0.0275105i −0.00872271 0.000886512i
\(964\) 0 0
\(965\) −5.88017 10.1847i −0.189289 0.327859i
\(966\) 0 0
\(967\) 4.21858 7.30679i 0.135660 0.234971i −0.790189 0.612863i \(-0.790018\pi\)
0.925850 + 0.377892i \(0.123351\pi\)
\(968\) 0 0
\(969\) 0.713373 14.0744i 0.0229168 0.452135i
\(970\) 0 0
\(971\) 44.0574 1.41387 0.706935 0.707279i \(-0.250078\pi\)
0.706935 + 0.707279i \(0.250078\pi\)
\(972\) 0 0
\(973\) −37.3055 −1.19596
\(974\) 0 0
\(975\) −0.384602 + 7.58797i −0.0123171 + 0.243010i
\(976\) 0 0
\(977\) −4.63827 + 8.03373i −0.148392 + 0.257022i −0.930633 0.365953i \(-0.880743\pi\)
0.782242 + 0.622975i \(0.214076\pi\)
\(978\) 0 0
\(979\) 5.27166 + 9.13079i 0.168483 + 0.291821i
\(980\) 0 0
\(981\) 1.02707 + 0.104384i 0.0327918 + 0.00333272i
\(982\) 0 0
\(983\) 22.6276 + 39.1921i 0.721708 + 1.25003i 0.960315 + 0.278919i \(0.0899760\pi\)
−0.238607 + 0.971116i \(0.576691\pi\)
\(984\) 0 0
\(985\) 0.346142 0.599535i 0.0110290 0.0191028i
\(986\) 0 0
\(987\) 6.40562 + 4.14424i 0.203893 + 0.131913i
\(988\) 0 0
\(989\) 0.0257426 0.000818566
\(990\) 0 0
\(991\) −15.1227 −0.480389 −0.240194 0.970725i \(-0.577211\pi\)
−0.240194 + 0.970725i \(0.577211\pi\)
\(992\) 0 0
\(993\) −20.3594 + 10.4177i −0.646085 + 0.330595i
\(994\) 0 0
\(995\) 2.21439 3.83544i 0.0702009 0.121592i
\(996\) 0 0
\(997\) −22.1783 38.4139i −0.702393 1.21658i −0.967624 0.252395i \(-0.918782\pi\)
0.265231 0.964185i \(-0.414552\pi\)
\(998\) 0 0
\(999\) 7.11245 46.4541i 0.225028 1.46974i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.q.d.625.4 yes 12
3.2 odd 2 2808.2.q.d.1873.4 12
9.2 odd 6 2808.2.q.d.937.4 12
9.4 even 3 8424.2.a.v.1.4 6
9.5 odd 6 8424.2.a.u.1.3 6
9.7 even 3 inner 936.2.q.d.313.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.q.d.313.4 12 9.7 even 3 inner
936.2.q.d.625.4 yes 12 1.1 even 1 trivial
2808.2.q.d.937.4 12 9.2 odd 6
2808.2.q.d.1873.4 12 3.2 odd 2
8424.2.a.u.1.3 6 9.5 odd 6
8424.2.a.v.1.4 6 9.4 even 3