Properties

Label 936.2.q.d.625.2
Level $936$
Weight $2$
Character 936.625
Analytic conductor $7.474$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(313,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.313");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.q (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 29 x^{10} - 90 x^{9} + 217 x^{8} - 394 x^{7} + 555 x^{6} - 598 x^{5} + 483 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 625.2
Root \(0.500000 + 1.30710i\) of defining polynomial
Character \(\chi\) \(=\) 936.625
Dual form 936.2.q.d.313.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.69504 - 0.356160i) q^{3} +(0.348249 - 0.603184i) q^{5} +(-0.902727 - 1.56357i) q^{7} +(2.74630 + 1.20741i) q^{9} +(1.77560 + 3.07543i) q^{11} +(-0.500000 + 0.866025i) q^{13} +(-0.805124 + 0.898387i) q^{15} +4.15178 q^{17} -3.92509 q^{19} +(0.973275 + 2.97182i) q^{21} +(1.22602 - 2.12353i) q^{23} +(2.25745 + 3.91001i) q^{25} +(-4.22505 - 3.02472i) q^{27} +(-4.05379 - 7.02137i) q^{29} +(2.87972 - 4.98782i) q^{31} +(-1.91436 - 5.84537i) q^{33} -1.25749 q^{35} +11.3044 q^{37} +(1.15596 - 1.28987i) q^{39} +(2.04834 - 3.54783i) q^{41} +(4.75114 + 8.22921i) q^{43} +(1.68468 - 1.23605i) q^{45} +(-6.09061 - 10.5492i) q^{47} +(1.87017 - 3.23923i) q^{49} +(-7.03742 - 1.47870i) q^{51} +5.68715 q^{53} +2.47340 q^{55} +(6.65318 + 1.39796i) q^{57} +(-0.315470 + 0.546410i) q^{59} +(0.556113 + 0.963216i) q^{61} +(-0.591293 - 5.38399i) q^{63} +(0.348249 + 0.603184i) q^{65} +(7.05120 - 12.2130i) q^{67} +(-2.83446 + 3.16280i) q^{69} +4.85378 q^{71} -0.187674 q^{73} +(-2.43386 - 7.43162i) q^{75} +(3.20577 - 5.55255i) q^{77} +(1.82959 + 3.16894i) q^{79} +(6.08433 + 6.63181i) q^{81} +(1.34871 + 2.33604i) q^{83} +(1.44585 - 2.50429i) q^{85} +(4.37060 + 13.3453i) q^{87} -7.04438 q^{89} +1.80545 q^{91} +(-6.65770 + 7.42890i) q^{93} +(-1.36691 + 2.36755i) q^{95} +(6.95836 + 12.0522i) q^{97} +(1.16303 + 10.5899i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} - q^{5} + 2 q^{7} + 2 q^{9} - q^{11} - 6 q^{13} - 2 q^{15} + 12 q^{17} - 14 q^{19} - 24 q^{21} + 19 q^{23} + 5 q^{25} - 7 q^{27} - 2 q^{29} + 8 q^{31} - 9 q^{33} + 2 q^{35} - 34 q^{37}+ \cdots - 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.69504 0.356160i −0.978630 0.205629i
\(4\) 0 0
\(5\) 0.348249 0.603184i 0.155741 0.269752i −0.777587 0.628775i \(-0.783557\pi\)
0.933329 + 0.359023i \(0.116890\pi\)
\(6\) 0 0
\(7\) −0.902727 1.56357i −0.341199 0.590973i 0.643457 0.765482i \(-0.277500\pi\)
−0.984656 + 0.174509i \(0.944166\pi\)
\(8\) 0 0
\(9\) 2.74630 + 1.20741i 0.915433 + 0.402469i
\(10\) 0 0
\(11\) 1.77560 + 3.07543i 0.535364 + 0.927278i 0.999146 + 0.0413280i \(0.0131589\pi\)
−0.463782 + 0.885950i \(0.653508\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) 0 0
\(15\) −0.805124 + 0.898387i −0.207882 + 0.231963i
\(16\) 0 0
\(17\) 4.15178 1.00695 0.503477 0.864009i \(-0.332054\pi\)
0.503477 + 0.864009i \(0.332054\pi\)
\(18\) 0 0
\(19\) −3.92509 −0.900478 −0.450239 0.892908i \(-0.648661\pi\)
−0.450239 + 0.892908i \(0.648661\pi\)
\(20\) 0 0
\(21\) 0.973275 + 2.97182i 0.212386 + 0.648505i
\(22\) 0 0
\(23\) 1.22602 2.12353i 0.255643 0.442786i −0.709427 0.704779i \(-0.751046\pi\)
0.965070 + 0.261992i \(0.0843796\pi\)
\(24\) 0 0
\(25\) 2.25745 + 3.91001i 0.451489 + 0.782002i
\(26\) 0 0
\(27\) −4.22505 3.02472i −0.813111 0.582108i
\(28\) 0 0
\(29\) −4.05379 7.02137i −0.752770 1.30384i −0.946475 0.322777i \(-0.895384\pi\)
0.193705 0.981060i \(-0.437950\pi\)
\(30\) 0 0
\(31\) 2.87972 4.98782i 0.517213 0.895840i −0.482587 0.875848i \(-0.660303\pi\)
0.999800 0.0199915i \(-0.00636393\pi\)
\(32\) 0 0
\(33\) −1.91436 5.84537i −0.333248 1.01755i
\(34\) 0 0
\(35\) −1.25749 −0.212555
\(36\) 0 0
\(37\) 11.3044 1.85844 0.929220 0.369528i \(-0.120481\pi\)
0.929220 + 0.369528i \(0.120481\pi\)
\(38\) 0 0
\(39\) 1.15596 1.28987i 0.185102 0.206544i
\(40\) 0 0
\(41\) 2.04834 3.54783i 0.319897 0.554079i −0.660569 0.750765i \(-0.729685\pi\)
0.980466 + 0.196687i \(0.0630182\pi\)
\(42\) 0 0
\(43\) 4.75114 + 8.22921i 0.724541 + 1.25494i 0.959162 + 0.282856i \(0.0912818\pi\)
−0.234621 + 0.972087i \(0.575385\pi\)
\(44\) 0 0
\(45\) 1.68468 1.23605i 0.251138 0.184259i
\(46\) 0 0
\(47\) −6.09061 10.5492i −0.888406 1.53876i −0.841759 0.539853i \(-0.818480\pi\)
−0.0466473 0.998911i \(-0.514854\pi\)
\(48\) 0 0
\(49\) 1.87017 3.23923i 0.267167 0.462747i
\(50\) 0 0
\(51\) −7.03742 1.47870i −0.985436 0.207059i
\(52\) 0 0
\(53\) 5.68715 0.781190 0.390595 0.920563i \(-0.372269\pi\)
0.390595 + 0.920563i \(0.372269\pi\)
\(54\) 0 0
\(55\) 2.47340 0.333513
\(56\) 0 0
\(57\) 6.65318 + 1.39796i 0.881235 + 0.185164i
\(58\) 0 0
\(59\) −0.315470 + 0.546410i −0.0410707 + 0.0711365i −0.885830 0.464010i \(-0.846410\pi\)
0.844759 + 0.535146i \(0.179744\pi\)
\(60\) 0 0
\(61\) 0.556113 + 0.963216i 0.0712030 + 0.123327i 0.899429 0.437067i \(-0.143983\pi\)
−0.828226 + 0.560394i \(0.810650\pi\)
\(62\) 0 0
\(63\) −0.591293 5.38399i −0.0744959 0.678319i
\(64\) 0 0
\(65\) 0.348249 + 0.603184i 0.0431949 + 0.0748158i
\(66\) 0 0
\(67\) 7.05120 12.2130i 0.861441 1.49206i −0.00909658 0.999959i \(-0.502896\pi\)
0.870538 0.492101i \(-0.163771\pi\)
\(68\) 0 0
\(69\) −2.83446 + 3.16280i −0.341229 + 0.380756i
\(70\) 0 0
\(71\) 4.85378 0.576037 0.288019 0.957625i \(-0.407003\pi\)
0.288019 + 0.957625i \(0.407003\pi\)
\(72\) 0 0
\(73\) −0.187674 −0.0219656 −0.0109828 0.999940i \(-0.503496\pi\)
−0.0109828 + 0.999940i \(0.503496\pi\)
\(74\) 0 0
\(75\) −2.43386 7.43162i −0.281039 0.858130i
\(76\) 0 0
\(77\) 3.20577 5.55255i 0.365331 0.632772i
\(78\) 0 0
\(79\) 1.82959 + 3.16894i 0.205845 + 0.356534i 0.950402 0.311025i \(-0.100672\pi\)
−0.744557 + 0.667559i \(0.767339\pi\)
\(80\) 0 0
\(81\) 6.08433 + 6.63181i 0.676037 + 0.736868i
\(82\) 0 0
\(83\) 1.34871 + 2.33604i 0.148040 + 0.256414i 0.930503 0.366284i \(-0.119370\pi\)
−0.782463 + 0.622697i \(0.786037\pi\)
\(84\) 0 0
\(85\) 1.44585 2.50429i 0.156825 0.271628i
\(86\) 0 0
\(87\) 4.37060 + 13.3453i 0.468577 + 1.43076i
\(88\) 0 0
\(89\) −7.04438 −0.746703 −0.373351 0.927690i \(-0.621791\pi\)
−0.373351 + 0.927690i \(0.621791\pi\)
\(90\) 0 0
\(91\) 1.80545 0.189263
\(92\) 0 0
\(93\) −6.65770 + 7.42890i −0.690371 + 0.770342i
\(94\) 0 0
\(95\) −1.36691 + 2.36755i −0.140242 + 0.242906i
\(96\) 0 0
\(97\) 6.95836 + 12.0522i 0.706515 + 1.22372i 0.966142 + 0.258010i \(0.0830669\pi\)
−0.259628 + 0.965709i \(0.583600\pi\)
\(98\) 0 0
\(99\) 1.16303 + 10.5899i 0.116889 + 1.06433i
\(100\) 0 0
\(101\) −3.69245 6.39550i −0.367412 0.636376i 0.621748 0.783217i \(-0.286423\pi\)
−0.989160 + 0.146841i \(0.953089\pi\)
\(102\) 0 0
\(103\) 4.06357 7.03830i 0.400395 0.693505i −0.593378 0.804924i \(-0.702206\pi\)
0.993774 + 0.111419i \(0.0355396\pi\)
\(104\) 0 0
\(105\) 2.13150 + 0.447869i 0.208013 + 0.0437075i
\(106\) 0 0
\(107\) −2.42349 −0.234288 −0.117144 0.993115i \(-0.537374\pi\)
−0.117144 + 0.993115i \(0.537374\pi\)
\(108\) 0 0
\(109\) −9.67961 −0.927139 −0.463569 0.886061i \(-0.653432\pi\)
−0.463569 + 0.886061i \(0.653432\pi\)
\(110\) 0 0
\(111\) −19.1615 4.02619i −1.81872 0.382149i
\(112\) 0 0
\(113\) 10.1084 17.5083i 0.950919 1.64704i 0.207478 0.978240i \(-0.433474\pi\)
0.743441 0.668801i \(-0.233192\pi\)
\(114\) 0 0
\(115\) −0.853919 1.47903i −0.0796284 0.137920i
\(116\) 0 0
\(117\) −2.41880 + 1.77466i −0.223618 + 0.164068i
\(118\) 0 0
\(119\) −3.74792 6.49159i −0.343571 0.595083i
\(120\) 0 0
\(121\) −0.805520 + 1.39520i −0.0732291 + 0.126837i
\(122\) 0 0
\(123\) −4.73561 + 5.28417i −0.426996 + 0.476458i
\(124\) 0 0
\(125\) 6.62709 0.592745
\(126\) 0 0
\(127\) 2.93094 0.260079 0.130040 0.991509i \(-0.458490\pi\)
0.130040 + 0.991509i \(0.458490\pi\)
\(128\) 0 0
\(129\) −5.12244 15.6410i −0.451005 1.37711i
\(130\) 0 0
\(131\) 3.27910 5.67956i 0.286496 0.496226i −0.686475 0.727154i \(-0.740843\pi\)
0.972971 + 0.230928i \(0.0741761\pi\)
\(132\) 0 0
\(133\) 3.54329 + 6.13715i 0.307242 + 0.532158i
\(134\) 0 0
\(135\) −3.29583 + 1.49513i −0.283660 + 0.128680i
\(136\) 0 0
\(137\) −8.17862 14.1658i −0.698746 1.21026i −0.968901 0.247447i \(-0.920408\pi\)
0.270155 0.962817i \(-0.412925\pi\)
\(138\) 0 0
\(139\) −10.6367 + 18.4233i −0.902195 + 1.56265i −0.0775552 + 0.996988i \(0.524711\pi\)
−0.824639 + 0.565659i \(0.808622\pi\)
\(140\) 0 0
\(141\) 6.56659 + 20.0506i 0.553006 + 1.68856i
\(142\) 0 0
\(143\) −3.55120 −0.296966
\(144\) 0 0
\(145\) −5.64691 −0.468950
\(146\) 0 0
\(147\) −4.32369 + 4.82453i −0.356612 + 0.397921i
\(148\) 0 0
\(149\) −8.20028 + 14.2033i −0.671793 + 1.16358i 0.305602 + 0.952159i \(0.401142\pi\)
−0.977395 + 0.211420i \(0.932191\pi\)
\(150\) 0 0
\(151\) 5.23882 + 9.07390i 0.426329 + 0.738424i 0.996544 0.0830721i \(-0.0264732\pi\)
−0.570214 + 0.821496i \(0.693140\pi\)
\(152\) 0 0
\(153\) 11.4020 + 5.01289i 0.921800 + 0.405268i
\(154\) 0 0
\(155\) −2.00572 3.47400i −0.161103 0.279039i
\(156\) 0 0
\(157\) −2.07795 + 3.59912i −0.165839 + 0.287241i −0.936953 0.349456i \(-0.886366\pi\)
0.771114 + 0.636697i \(0.219700\pi\)
\(158\) 0 0
\(159\) −9.63992 2.02553i −0.764496 0.160635i
\(160\) 0 0
\(161\) −4.42704 −0.348900
\(162\) 0 0
\(163\) 10.7460 0.841690 0.420845 0.907133i \(-0.361734\pi\)
0.420845 + 0.907133i \(0.361734\pi\)
\(164\) 0 0
\(165\) −4.19251 0.880927i −0.326386 0.0685801i
\(166\) 0 0
\(167\) 0.104236 0.180542i 0.00806604 0.0139708i −0.861964 0.506969i \(-0.830766\pi\)
0.870030 + 0.492998i \(0.164099\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 0 0
\(171\) −10.7795 4.73919i −0.824328 0.362415i
\(172\) 0 0
\(173\) 9.83238 + 17.0302i 0.747542 + 1.29478i 0.948998 + 0.315283i \(0.102099\pi\)
−0.201456 + 0.979498i \(0.564567\pi\)
\(174\) 0 0
\(175\) 4.07571 7.05934i 0.308095 0.533636i
\(176\) 0 0
\(177\) 0.729342 0.813827i 0.0548207 0.0611710i
\(178\) 0 0
\(179\) −21.4050 −1.59989 −0.799944 0.600075i \(-0.795137\pi\)
−0.799944 + 0.600075i \(0.795137\pi\)
\(180\) 0 0
\(181\) −20.4190 −1.51773 −0.758866 0.651247i \(-0.774246\pi\)
−0.758866 + 0.651247i \(0.774246\pi\)
\(182\) 0 0
\(183\) −0.599573 1.83075i −0.0443217 0.135333i
\(184\) 0 0
\(185\) 3.93676 6.81866i 0.289436 0.501318i
\(186\) 0 0
\(187\) 7.37190 + 12.7685i 0.539087 + 0.933726i
\(188\) 0 0
\(189\) −0.915298 + 9.33665i −0.0665781 + 0.679142i
\(190\) 0 0
\(191\) 7.83237 + 13.5661i 0.566730 + 0.981606i 0.996886 + 0.0788510i \(0.0251251\pi\)
−0.430156 + 0.902754i \(0.641542\pi\)
\(192\) 0 0
\(193\) −2.59025 + 4.48644i −0.186450 + 0.322941i −0.944064 0.329762i \(-0.893032\pi\)
0.757614 + 0.652703i \(0.226365\pi\)
\(194\) 0 0
\(195\) −0.375464 1.14645i −0.0268875 0.0820991i
\(196\) 0 0
\(197\) −4.94429 −0.352266 −0.176133 0.984366i \(-0.556359\pi\)
−0.176133 + 0.984366i \(0.556359\pi\)
\(198\) 0 0
\(199\) 18.2528 1.29391 0.646954 0.762529i \(-0.276043\pi\)
0.646954 + 0.762529i \(0.276043\pi\)
\(200\) 0 0
\(201\) −16.3018 + 18.1902i −1.14984 + 1.28304i
\(202\) 0 0
\(203\) −7.31893 + 12.6768i −0.513688 + 0.889734i
\(204\) 0 0
\(205\) −1.42666 2.47106i −0.0996426 0.172586i
\(206\) 0 0
\(207\) 5.93098 4.35154i 0.412232 0.302453i
\(208\) 0 0
\(209\) −6.96940 12.0714i −0.482083 0.834993i
\(210\) 0 0
\(211\) −8.04187 + 13.9289i −0.553625 + 0.958907i 0.444384 + 0.895837i \(0.353423\pi\)
−0.998009 + 0.0630706i \(0.979911\pi\)
\(212\) 0 0
\(213\) −8.22733 1.72872i −0.563727 0.118450i
\(214\) 0 0
\(215\) 6.61830 0.451365
\(216\) 0 0
\(217\) −10.3984 −0.705890
\(218\) 0 0
\(219\) 0.318115 + 0.0668420i 0.0214962 + 0.00451676i
\(220\) 0 0
\(221\) −2.07589 + 3.59555i −0.139639 + 0.241863i
\(222\) 0 0
\(223\) −3.16846 5.48793i −0.212176 0.367499i 0.740219 0.672365i \(-0.234722\pi\)
−0.952395 + 0.304866i \(0.901388\pi\)
\(224\) 0 0
\(225\) 1.47864 + 13.4637i 0.0985763 + 0.897582i
\(226\) 0 0
\(227\) 6.20062 + 10.7398i 0.411550 + 0.712825i 0.995059 0.0992813i \(-0.0316544\pi\)
−0.583510 + 0.812106i \(0.698321\pi\)
\(228\) 0 0
\(229\) −5.21552 + 9.03354i −0.344651 + 0.596953i −0.985290 0.170889i \(-0.945336\pi\)
0.640639 + 0.767842i \(0.278669\pi\)
\(230\) 0 0
\(231\) −7.41149 + 8.27001i −0.487640 + 0.544127i
\(232\) 0 0
\(233\) 1.96225 0.128551 0.0642757 0.997932i \(-0.479526\pi\)
0.0642757 + 0.997932i \(0.479526\pi\)
\(234\) 0 0
\(235\) −8.48418 −0.553447
\(236\) 0 0
\(237\) −1.97257 6.02310i −0.128132 0.391242i
\(238\) 0 0
\(239\) 8.77271 15.1948i 0.567460 0.982869i −0.429357 0.903135i \(-0.641260\pi\)
0.996816 0.0797339i \(-0.0254071\pi\)
\(240\) 0 0
\(241\) 8.02013 + 13.8913i 0.516622 + 0.894816i 0.999814 + 0.0193011i \(0.00614411\pi\)
−0.483192 + 0.875515i \(0.660523\pi\)
\(242\) 0 0
\(243\) −7.95118 13.4082i −0.510068 0.860134i
\(244\) 0 0
\(245\) −1.30257 2.25611i −0.0832180 0.144138i
\(246\) 0 0
\(247\) 1.96255 3.39923i 0.124874 0.216288i
\(248\) 0 0
\(249\) −1.45411 4.44003i −0.0921508 0.281375i
\(250\) 0 0
\(251\) 2.71819 0.171571 0.0857854 0.996314i \(-0.472660\pi\)
0.0857854 + 0.996314i \(0.472660\pi\)
\(252\) 0 0
\(253\) 8.70769 0.547448
\(254\) 0 0
\(255\) −3.34270 + 3.72991i −0.209328 + 0.233576i
\(256\) 0 0
\(257\) −0.334101 + 0.578680i −0.0208407 + 0.0360971i −0.876258 0.481843i \(-0.839968\pi\)
0.855417 + 0.517940i \(0.173301\pi\)
\(258\) 0 0
\(259\) −10.2048 17.6753i −0.634097 1.09829i
\(260\) 0 0
\(261\) −2.65526 24.1774i −0.164357 1.49654i
\(262\) 0 0
\(263\) 11.8478 + 20.5210i 0.730566 + 1.26538i 0.956641 + 0.291268i \(0.0940772\pi\)
−0.226075 + 0.974110i \(0.572589\pi\)
\(264\) 0 0
\(265\) 1.98054 3.43040i 0.121664 0.210728i
\(266\) 0 0
\(267\) 11.9405 + 2.50893i 0.730746 + 0.153544i
\(268\) 0 0
\(269\) −0.337101 −0.0205534 −0.0102767 0.999947i \(-0.503271\pi\)
−0.0102767 + 0.999947i \(0.503271\pi\)
\(270\) 0 0
\(271\) −7.27424 −0.441879 −0.220939 0.975288i \(-0.570912\pi\)
−0.220939 + 0.975288i \(0.570912\pi\)
\(272\) 0 0
\(273\) −3.06031 0.643030i −0.185218 0.0389179i
\(274\) 0 0
\(275\) −8.01665 + 13.8852i −0.483422 + 0.837312i
\(276\) 0 0
\(277\) 10.0808 + 17.4604i 0.605696 + 1.04910i 0.991941 + 0.126700i \(0.0404385\pi\)
−0.386245 + 0.922396i \(0.626228\pi\)
\(278\) 0 0
\(279\) 13.9309 10.2211i 0.834022 0.611919i
\(280\) 0 0
\(281\) −7.44369 12.8929i −0.444053 0.769123i 0.553932 0.832562i \(-0.313127\pi\)
−0.997986 + 0.0634386i \(0.979793\pi\)
\(282\) 0 0
\(283\) 12.5905 21.8075i 0.748430 1.29632i −0.200145 0.979766i \(-0.564141\pi\)
0.948575 0.316553i \(-0.102525\pi\)
\(284\) 0 0
\(285\) 3.16019 3.52625i 0.187193 0.208877i
\(286\) 0 0
\(287\) −7.39637 −0.436594
\(288\) 0 0
\(289\) 0.237270 0.0139571
\(290\) 0 0
\(291\) −7.50216 22.9073i −0.439784 1.34285i
\(292\) 0 0
\(293\) 10.1289 17.5438i 0.591738 1.02492i −0.402260 0.915526i \(-0.631775\pi\)
0.993998 0.109395i \(-0.0348915\pi\)
\(294\) 0 0
\(295\) 0.219724 + 0.380573i 0.0127928 + 0.0221578i
\(296\) 0 0
\(297\) 1.80033 18.3646i 0.104466 1.06562i
\(298\) 0 0
\(299\) 1.22602 + 2.12353i 0.0709026 + 0.122807i
\(300\) 0 0
\(301\) 8.57795 14.8575i 0.494425 0.856369i
\(302\) 0 0
\(303\) 3.98101 + 12.1557i 0.228703 + 0.698328i
\(304\) 0 0
\(305\) 0.774662 0.0443570
\(306\) 0 0
\(307\) 11.7802 0.672332 0.336166 0.941803i \(-0.390870\pi\)
0.336166 + 0.941803i \(0.390870\pi\)
\(308\) 0 0
\(309\) −9.39466 + 10.4829i −0.534443 + 0.596352i
\(310\) 0 0
\(311\) 8.41319 14.5721i 0.477068 0.826306i −0.522587 0.852586i \(-0.675033\pi\)
0.999655 + 0.0262802i \(0.00836620\pi\)
\(312\) 0 0
\(313\) 8.22111 + 14.2394i 0.464684 + 0.804857i 0.999187 0.0403097i \(-0.0128345\pi\)
−0.534503 + 0.845167i \(0.679501\pi\)
\(314\) 0 0
\(315\) −3.45345 1.51831i −0.194580 0.0855469i
\(316\) 0 0
\(317\) −6.95342 12.0437i −0.390543 0.676440i 0.601978 0.798512i \(-0.294379\pi\)
−0.992521 + 0.122072i \(0.961046\pi\)
\(318\) 0 0
\(319\) 14.3958 24.9343i 0.806012 1.39605i
\(320\) 0 0
\(321\) 4.10791 + 0.863151i 0.229281 + 0.0481764i
\(322\) 0 0
\(323\) −16.2961 −0.906740
\(324\) 0 0
\(325\) −4.51489 −0.250441
\(326\) 0 0
\(327\) 16.4073 + 3.44749i 0.907326 + 0.190647i
\(328\) 0 0
\(329\) −10.9963 + 19.0462i −0.606246 + 1.05005i
\(330\) 0 0
\(331\) 10.2230 + 17.7067i 0.561906 + 0.973251i 0.997330 + 0.0730249i \(0.0232652\pi\)
−0.435424 + 0.900226i \(0.643401\pi\)
\(332\) 0 0
\(333\) 31.0454 + 13.6491i 1.70128 + 0.747965i
\(334\) 0 0
\(335\) −4.91114 8.50635i −0.268324 0.464751i
\(336\) 0 0
\(337\) −3.89422 + 6.74498i −0.212131 + 0.367422i −0.952381 0.304909i \(-0.901374\pi\)
0.740250 + 0.672332i \(0.234707\pi\)
\(338\) 0 0
\(339\) −23.3699 + 26.0770i −1.26928 + 1.41631i
\(340\) 0 0
\(341\) 20.4530 1.10759
\(342\) 0 0
\(343\) −19.3912 −1.04703
\(344\) 0 0
\(345\) 0.920653 + 2.81114i 0.0495663 + 0.151347i
\(346\) 0 0
\(347\) −13.3992 + 23.2081i −0.719306 + 1.24588i 0.241969 + 0.970284i \(0.422207\pi\)
−0.961275 + 0.275591i \(0.911126\pi\)
\(348\) 0 0
\(349\) −17.1874 29.7695i −0.920022 1.59352i −0.799378 0.600829i \(-0.794837\pi\)
−0.120644 0.992696i \(-0.538496\pi\)
\(350\) 0 0
\(351\) 4.73201 2.14664i 0.252576 0.114579i
\(352\) 0 0
\(353\) −3.07875 5.33255i −0.163865 0.283823i 0.772387 0.635153i \(-0.219063\pi\)
−0.936252 + 0.351330i \(0.885730\pi\)
\(354\) 0 0
\(355\) 1.69032 2.92772i 0.0897129 0.155387i
\(356\) 0 0
\(357\) 4.04082 + 12.3383i 0.213863 + 0.653014i
\(358\) 0 0
\(359\) 7.04536 0.371840 0.185920 0.982565i \(-0.440474\pi\)
0.185920 + 0.982565i \(0.440474\pi\)
\(360\) 0 0
\(361\) −3.59365 −0.189139
\(362\) 0 0
\(363\) 1.86230 2.07803i 0.0977455 0.109068i
\(364\) 0 0
\(365\) −0.0653572 + 0.113202i −0.00342095 + 0.00592527i
\(366\) 0 0
\(367\) 1.64224 + 2.84445i 0.0857244 + 0.148479i 0.905700 0.423920i \(-0.139346\pi\)
−0.819975 + 0.572399i \(0.806013\pi\)
\(368\) 0 0
\(369\) 9.90905 7.27023i 0.515845 0.378473i
\(370\) 0 0
\(371\) −5.13394 8.89224i −0.266541 0.461662i
\(372\) 0 0
\(373\) 9.45547 16.3774i 0.489586 0.847987i −0.510342 0.859971i \(-0.670481\pi\)
0.999928 + 0.0119839i \(0.00381469\pi\)
\(374\) 0 0
\(375\) −11.2332 2.36031i −0.580078 0.121886i
\(376\) 0 0
\(377\) 8.10758 0.417562
\(378\) 0 0
\(379\) −1.51134 −0.0776324 −0.0388162 0.999246i \(-0.512359\pi\)
−0.0388162 + 0.999246i \(0.512359\pi\)
\(380\) 0 0
\(381\) −4.96806 1.04388i −0.254521 0.0534798i
\(382\) 0 0
\(383\) 1.33954 2.32015i 0.0684471 0.118554i −0.829771 0.558104i \(-0.811529\pi\)
0.898218 + 0.439550i \(0.144862\pi\)
\(384\) 0 0
\(385\) −2.23281 3.86733i −0.113794 0.197098i
\(386\) 0 0
\(387\) 3.11203 + 28.3364i 0.158193 + 1.44042i
\(388\) 0 0
\(389\) −8.85533 15.3379i −0.448983 0.777662i 0.549337 0.835601i \(-0.314880\pi\)
−0.998320 + 0.0579394i \(0.981547\pi\)
\(390\) 0 0
\(391\) 5.09016 8.81642i 0.257421 0.445866i
\(392\) 0 0
\(393\) −7.58103 + 8.45919i −0.382412 + 0.426710i
\(394\) 0 0
\(395\) 2.54861 0.128234
\(396\) 0 0
\(397\) −24.2097 −1.21505 −0.607526 0.794300i \(-0.707838\pi\)
−0.607526 + 0.794300i \(0.707838\pi\)
\(398\) 0 0
\(399\) −3.82019 11.6647i −0.191249 0.583964i
\(400\) 0 0
\(401\) 12.5256 21.6949i 0.625497 1.08339i −0.362948 0.931809i \(-0.618230\pi\)
0.988445 0.151582i \(-0.0484369\pi\)
\(402\) 0 0
\(403\) 2.87972 + 4.98782i 0.143449 + 0.248461i
\(404\) 0 0
\(405\) 6.11906 1.36045i 0.304059 0.0676014i
\(406\) 0 0
\(407\) 20.0722 + 34.7660i 0.994941 + 1.72329i
\(408\) 0 0
\(409\) −8.11655 + 14.0583i −0.401338 + 0.695137i −0.993888 0.110397i \(-0.964788\pi\)
0.592550 + 0.805534i \(0.298121\pi\)
\(410\) 0 0
\(411\) 8.81777 + 26.9244i 0.434949 + 1.32808i
\(412\) 0 0
\(413\) 1.13913 0.0560530
\(414\) 0 0
\(415\) 1.87875 0.0922242
\(416\) 0 0
\(417\) 24.5913 27.4399i 1.20424 1.34374i
\(418\) 0 0
\(419\) 4.60405 7.97445i 0.224923 0.389577i −0.731374 0.681977i \(-0.761120\pi\)
0.956296 + 0.292400i \(0.0944537\pi\)
\(420\) 0 0
\(421\) −4.75579 8.23726i −0.231783 0.401460i 0.726550 0.687114i \(-0.241123\pi\)
−0.958333 + 0.285654i \(0.907789\pi\)
\(422\) 0 0
\(423\) −3.98939 36.3252i −0.193971 1.76619i
\(424\) 0 0
\(425\) 9.37242 + 16.2335i 0.454629 + 0.787441i
\(426\) 0 0
\(427\) 1.00404 1.73904i 0.0485887 0.0841581i
\(428\) 0 0
\(429\) 6.01942 + 1.26480i 0.290620 + 0.0610649i
\(430\) 0 0
\(431\) 18.3694 0.884825 0.442413 0.896812i \(-0.354123\pi\)
0.442413 + 0.896812i \(0.354123\pi\)
\(432\) 0 0
\(433\) −38.8940 −1.86913 −0.934563 0.355796i \(-0.884210\pi\)
−0.934563 + 0.355796i \(0.884210\pi\)
\(434\) 0 0
\(435\) 9.57172 + 2.01120i 0.458929 + 0.0964298i
\(436\) 0 0
\(437\) −4.81224 + 8.33505i −0.230201 + 0.398719i
\(438\) 0 0
\(439\) 9.34985 + 16.1944i 0.446244 + 0.772917i 0.998138 0.0609970i \(-0.0194280\pi\)
−0.551894 + 0.833914i \(0.686095\pi\)
\(440\) 0 0
\(441\) 9.04712 6.63784i 0.430815 0.316087i
\(442\) 0 0
\(443\) 12.8261 + 22.2155i 0.609386 + 1.05549i 0.991342 + 0.131307i \(0.0419175\pi\)
−0.381955 + 0.924181i \(0.624749\pi\)
\(444\) 0 0
\(445\) −2.45319 + 4.24906i −0.116293 + 0.201425i
\(446\) 0 0
\(447\) 18.9584 21.1545i 0.896702 1.00057i
\(448\) 0 0
\(449\) −36.1563 −1.70632 −0.853160 0.521649i \(-0.825317\pi\)
−0.853160 + 0.521649i \(0.825317\pi\)
\(450\) 0 0
\(451\) 14.5482 0.685046
\(452\) 0 0
\(453\) −5.64823 17.2465i −0.265377 0.810309i
\(454\) 0 0
\(455\) 0.628746 1.08902i 0.0294761 0.0510541i
\(456\) 0 0
\(457\) 6.18955 + 10.7206i 0.289535 + 0.501489i 0.973699 0.227839i \(-0.0731661\pi\)
−0.684164 + 0.729328i \(0.739833\pi\)
\(458\) 0 0
\(459\) −17.5415 12.5580i −0.818766 0.586157i
\(460\) 0 0
\(461\) −7.39618 12.8106i −0.344474 0.596647i 0.640784 0.767721i \(-0.278610\pi\)
−0.985258 + 0.171074i \(0.945276\pi\)
\(462\) 0 0
\(463\) 11.5625 20.0269i 0.537356 0.930728i −0.461689 0.887042i \(-0.652756\pi\)
0.999045 0.0436862i \(-0.0139102\pi\)
\(464\) 0 0
\(465\) 2.16246 + 6.60292i 0.100282 + 0.306203i
\(466\) 0 0
\(467\) 25.1537 1.16398 0.581988 0.813197i \(-0.302275\pi\)
0.581988 + 0.813197i \(0.302275\pi\)
\(468\) 0 0
\(469\) −25.4612 −1.17569
\(470\) 0 0
\(471\) 4.80407 5.36056i 0.221360 0.247002i
\(472\) 0 0
\(473\) −16.8722 + 29.2236i −0.775787 + 1.34370i
\(474\) 0 0
\(475\) −8.86068 15.3472i −0.406556 0.704176i
\(476\) 0 0
\(477\) 15.6186 + 6.86671i 0.715127 + 0.314405i
\(478\) 0 0
\(479\) 2.48945 + 4.31186i 0.113746 + 0.197014i 0.917278 0.398248i \(-0.130382\pi\)
−0.803532 + 0.595262i \(0.797048\pi\)
\(480\) 0 0
\(481\) −5.65222 + 9.78994i −0.257719 + 0.446383i
\(482\) 0 0
\(483\) 7.50400 + 1.57674i 0.341444 + 0.0717439i
\(484\) 0 0
\(485\) 9.69296 0.440134
\(486\) 0 0
\(487\) 11.6666 0.528666 0.264333 0.964431i \(-0.414848\pi\)
0.264333 + 0.964431i \(0.414848\pi\)
\(488\) 0 0
\(489\) −18.2148 3.82729i −0.823703 0.173076i
\(490\) 0 0
\(491\) −6.24985 + 10.8251i −0.282052 + 0.488528i −0.971890 0.235436i \(-0.924348\pi\)
0.689838 + 0.723964i \(0.257682\pi\)
\(492\) 0 0
\(493\) −16.8304 29.1512i −0.758005 1.31290i
\(494\) 0 0
\(495\) 6.79271 + 2.98641i 0.305309 + 0.134229i
\(496\) 0 0
\(497\) −4.38163 7.58921i −0.196543 0.340423i
\(498\) 0 0
\(499\) −3.67802 + 6.37051i −0.164651 + 0.285183i −0.936531 0.350584i \(-0.885983\pi\)
0.771881 + 0.635768i \(0.219316\pi\)
\(500\) 0 0
\(501\) −0.240986 + 0.268901i −0.0107665 + 0.0120136i
\(502\) 0 0
\(503\) −25.8567 −1.15289 −0.576447 0.817134i \(-0.695561\pi\)
−0.576447 + 0.817134i \(0.695561\pi\)
\(504\) 0 0
\(505\) −5.14356 −0.228885
\(506\) 0 0
\(507\) 0.539075 + 1.64602i 0.0239412 + 0.0731025i
\(508\) 0 0
\(509\) −10.6033 + 18.3655i −0.469983 + 0.814035i −0.999411 0.0343202i \(-0.989073\pi\)
0.529428 + 0.848355i \(0.322407\pi\)
\(510\) 0 0
\(511\) 0.169418 + 0.293441i 0.00749463 + 0.0129811i
\(512\) 0 0
\(513\) 16.5837 + 11.8723i 0.732189 + 0.524176i
\(514\) 0 0
\(515\) −2.83026 4.90216i −0.124716 0.216015i
\(516\) 0 0
\(517\) 21.6290 37.4625i 0.951241 1.64760i
\(518\) 0 0
\(519\) −10.6008 32.3687i −0.465323 1.42083i
\(520\) 0 0
\(521\) 3.52661 0.154504 0.0772519 0.997012i \(-0.475385\pi\)
0.0772519 + 0.997012i \(0.475385\pi\)
\(522\) 0 0
\(523\) −16.7172 −0.730991 −0.365495 0.930813i \(-0.619100\pi\)
−0.365495 + 0.930813i \(0.619100\pi\)
\(524\) 0 0
\(525\) −9.42274 + 10.5142i −0.411242 + 0.458879i
\(526\) 0 0
\(527\) 11.9560 20.7083i 0.520810 0.902070i
\(528\) 0 0
\(529\) 8.49375 + 14.7116i 0.369294 + 0.639635i
\(530\) 0 0
\(531\) −1.52611 + 1.11970i −0.0662277 + 0.0485910i
\(532\) 0 0
\(533\) 2.04834 + 3.54783i 0.0887236 + 0.153674i
\(534\) 0 0
\(535\) −0.843977 + 1.46181i −0.0364883 + 0.0631996i
\(536\) 0 0
\(537\) 36.2823 + 7.62361i 1.56570 + 0.328983i
\(538\) 0 0
\(539\) 13.2827 0.572126
\(540\) 0 0
\(541\) 35.5683 1.52920 0.764600 0.644505i \(-0.222936\pi\)
0.764600 + 0.644505i \(0.222936\pi\)
\(542\) 0 0
\(543\) 34.6110 + 7.27243i 1.48530 + 0.312090i
\(544\) 0 0
\(545\) −3.37091 + 5.83859i −0.144394 + 0.250098i
\(546\) 0 0
\(547\) −2.95765 5.12281i −0.126460 0.219035i 0.795843 0.605504i \(-0.207028\pi\)
−0.922303 + 0.386468i \(0.873695\pi\)
\(548\) 0 0
\(549\) 0.364258 + 3.31674i 0.0155462 + 0.141555i
\(550\) 0 0
\(551\) 15.9115 + 27.5595i 0.677853 + 1.17408i
\(552\) 0 0
\(553\) 3.30324 5.72138i 0.140468 0.243298i
\(554\) 0 0
\(555\) −9.10148 + 10.1558i −0.386336 + 0.431088i
\(556\) 0 0
\(557\) 31.9707 1.35464 0.677320 0.735689i \(-0.263141\pi\)
0.677320 + 0.735689i \(0.263141\pi\)
\(558\) 0 0
\(559\) −9.50227 −0.401903
\(560\) 0 0
\(561\) −7.94802 24.2687i −0.335566 1.02462i
\(562\) 0 0
\(563\) 15.0985 26.1514i 0.636326 1.10215i −0.349906 0.936785i \(-0.613787\pi\)
0.986232 0.165365i \(-0.0528801\pi\)
\(564\) 0 0
\(565\) −7.04048 12.1945i −0.296195 0.513025i
\(566\) 0 0
\(567\) 4.87680 15.5000i 0.204807 0.650938i
\(568\) 0 0
\(569\) 2.85197 + 4.93976i 0.119561 + 0.207086i 0.919594 0.392871i \(-0.128518\pi\)
−0.800033 + 0.599956i \(0.795185\pi\)
\(570\) 0 0
\(571\) 8.84404 15.3183i 0.370112 0.641052i −0.619471 0.785020i \(-0.712653\pi\)
0.989582 + 0.143968i \(0.0459861\pi\)
\(572\) 0 0
\(573\) −8.44447 25.7845i −0.352773 1.07716i
\(574\) 0 0
\(575\) 11.0707 0.461680
\(576\) 0 0
\(577\) −10.1515 −0.422612 −0.211306 0.977420i \(-0.567772\pi\)
−0.211306 + 0.977420i \(0.567772\pi\)
\(578\) 0 0
\(579\) 5.98846 6.68215i 0.248872 0.277701i
\(580\) 0 0
\(581\) 2.43504 4.21761i 0.101022 0.174976i
\(582\) 0 0
\(583\) 10.0981 + 17.4904i 0.418221 + 0.724380i
\(584\) 0 0
\(585\) 0.228105 + 2.07700i 0.00943100 + 0.0858735i
\(586\) 0 0
\(587\) −9.67084 16.7504i −0.399158 0.691362i 0.594464 0.804122i \(-0.297364\pi\)
−0.993622 + 0.112760i \(0.964031\pi\)
\(588\) 0 0
\(589\) −11.3032 + 19.5777i −0.465739 + 0.806684i
\(590\) 0 0
\(591\) 8.38075 + 1.76096i 0.344738 + 0.0724361i
\(592\) 0 0
\(593\) −42.4280 −1.74231 −0.871155 0.491008i \(-0.836629\pi\)
−0.871155 + 0.491008i \(0.836629\pi\)
\(594\) 0 0
\(595\) −5.22083 −0.214033
\(596\) 0 0
\(597\) −30.9392 6.50092i −1.26626 0.266065i
\(598\) 0 0
\(599\) −0.259848 + 0.450070i −0.0106171 + 0.0183894i −0.871285 0.490777i \(-0.836713\pi\)
0.860668 + 0.509166i \(0.170046\pi\)
\(600\) 0 0
\(601\) 3.78973 + 6.56400i 0.154586 + 0.267751i 0.932908 0.360114i \(-0.117262\pi\)
−0.778322 + 0.627865i \(0.783929\pi\)
\(602\) 0 0
\(603\) 34.1108 25.0270i 1.38910 1.01918i
\(604\) 0 0
\(605\) 0.561043 + 0.971754i 0.0228096 + 0.0395074i
\(606\) 0 0
\(607\) −6.44836 + 11.1689i −0.261731 + 0.453331i −0.966702 0.255905i \(-0.917627\pi\)
0.704971 + 0.709236i \(0.250960\pi\)
\(608\) 0 0
\(609\) 16.9208 18.8809i 0.685666 0.765091i
\(610\) 0 0
\(611\) 12.1812 0.492799
\(612\) 0 0
\(613\) −11.2150 −0.452970 −0.226485 0.974015i \(-0.572723\pi\)
−0.226485 + 0.974015i \(0.572723\pi\)
\(614\) 0 0
\(615\) 1.53816 + 4.69665i 0.0620245 + 0.189387i
\(616\) 0 0
\(617\) −13.8094 + 23.9186i −0.555946 + 0.962927i 0.441883 + 0.897073i \(0.354311\pi\)
−0.997829 + 0.0658541i \(0.979023\pi\)
\(618\) 0 0
\(619\) −13.1002 22.6903i −0.526543 0.911999i −0.999522 0.0309249i \(-0.990155\pi\)
0.472979 0.881074i \(-0.343179\pi\)
\(620\) 0 0
\(621\) −11.6031 + 5.26364i −0.465616 + 0.211223i
\(622\) 0 0
\(623\) 6.35915 + 11.0144i 0.254774 + 0.441281i
\(624\) 0 0
\(625\) −8.97935 + 15.5527i −0.359174 + 0.622108i
\(626\) 0 0
\(627\) 7.51406 + 22.9436i 0.300083 + 0.916280i
\(628\) 0 0
\(629\) 46.9336 1.87136
\(630\) 0 0
\(631\) −5.06798 −0.201753 −0.100876 0.994899i \(-0.532165\pi\)
−0.100876 + 0.994899i \(0.532165\pi\)
\(632\) 0 0
\(633\) 18.5922 20.7459i 0.738973 0.824574i
\(634\) 0 0
\(635\) 1.02070 1.76790i 0.0405051 0.0701569i
\(636\) 0 0
\(637\) 1.87017 + 3.23923i 0.0740988 + 0.128343i
\(638\) 0 0
\(639\) 13.3299 + 5.86049i 0.527324 + 0.231837i
\(640\) 0 0
\(641\) −17.9428 31.0778i −0.708698 1.22750i −0.965340 0.260994i \(-0.915950\pi\)
0.256643 0.966506i \(-0.417384\pi\)
\(642\) 0 0
\(643\) −13.8261 + 23.9475i −0.545248 + 0.944398i 0.453343 + 0.891336i \(0.350231\pi\)
−0.998591 + 0.0530617i \(0.983102\pi\)
\(644\) 0 0
\(645\) −11.2183 2.35717i −0.441719 0.0928137i
\(646\) 0 0
\(647\) −47.7112 −1.87572 −0.937860 0.347014i \(-0.887195\pi\)
−0.937860 + 0.347014i \(0.887195\pi\)
\(648\) 0 0
\(649\) −2.24059 −0.0879510
\(650\) 0 0
\(651\) 17.6257 + 3.70350i 0.690805 + 0.145151i
\(652\) 0 0
\(653\) −23.3713 + 40.4804i −0.914591 + 1.58412i −0.107093 + 0.994249i \(0.534154\pi\)
−0.807498 + 0.589870i \(0.799179\pi\)
\(654\) 0 0
\(655\) −2.28388 3.95580i −0.0892387 0.154566i
\(656\) 0 0
\(657\) −0.515409 0.226599i −0.0201080 0.00884048i
\(658\) 0 0
\(659\) 14.4402 + 25.0112i 0.562511 + 0.974298i 0.997276 + 0.0737540i \(0.0234980\pi\)
−0.434765 + 0.900544i \(0.643169\pi\)
\(660\) 0 0
\(661\) 23.7801 41.1884i 0.924939 1.60204i 0.133281 0.991078i \(-0.457449\pi\)
0.791659 0.610964i \(-0.209218\pi\)
\(662\) 0 0
\(663\) 4.79930 5.35523i 0.186389 0.207980i
\(664\) 0 0
\(665\) 4.93578 0.191401
\(666\) 0 0
\(667\) −19.8801 −0.769761
\(668\) 0 0
\(669\) 3.41607 + 10.4307i 0.132073 + 0.403275i
\(670\) 0 0
\(671\) −1.97487 + 3.42057i −0.0762390 + 0.132050i
\(672\) 0 0
\(673\) −0.252044 0.436553i −0.00971558 0.0168279i 0.861127 0.508390i \(-0.169759\pi\)
−0.870842 + 0.491562i \(0.836426\pi\)
\(674\) 0 0
\(675\) 2.28888 23.3481i 0.0880991 0.898670i
\(676\) 0 0
\(677\) 15.6821 + 27.1623i 0.602714 + 1.04393i 0.992408 + 0.122987i \(0.0392473\pi\)
−0.389694 + 0.920944i \(0.627419\pi\)
\(678\) 0 0
\(679\) 12.5630 21.7597i 0.482124 0.835062i
\(680\) 0 0
\(681\) −6.68520 20.4127i −0.256177 0.782218i
\(682\) 0 0
\(683\) −30.0446 −1.14962 −0.574812 0.818286i \(-0.694925\pi\)
−0.574812 + 0.818286i \(0.694925\pi\)
\(684\) 0 0
\(685\) −11.3928 −0.435295
\(686\) 0 0
\(687\) 12.0579 13.4546i 0.460037 0.513326i
\(688\) 0 0
\(689\) −2.84357 + 4.92521i −0.108332 + 0.187636i
\(690\) 0 0
\(691\) 2.61256 + 4.52508i 0.0993864 + 0.172142i 0.911431 0.411453i \(-0.134979\pi\)
−0.812044 + 0.583596i \(0.801645\pi\)
\(692\) 0 0
\(693\) 15.5082 11.3783i 0.589107 0.432226i
\(694\) 0 0
\(695\) 7.40844 + 12.8318i 0.281018 + 0.486738i
\(696\) 0 0
\(697\) 8.50427 14.7298i 0.322122 0.557932i
\(698\) 0 0
\(699\) −3.32609 0.698875i −0.125804 0.0264339i
\(700\) 0 0
\(701\) 27.5913 1.04211 0.521054 0.853524i \(-0.325539\pi\)
0.521054 + 0.853524i \(0.325539\pi\)
\(702\) 0 0
\(703\) −44.3710 −1.67348
\(704\) 0 0
\(705\) 14.3810 + 3.02172i 0.541620 + 0.113805i
\(706\) 0 0
\(707\) −6.66654 + 11.5468i −0.250721 + 0.434261i
\(708\) 0 0
\(709\) −6.58122 11.3990i −0.247163 0.428099i 0.715575 0.698536i \(-0.246165\pi\)
−0.962738 + 0.270438i \(0.912832\pi\)
\(710\) 0 0
\(711\) 1.19839 + 10.9119i 0.0449433 + 0.409229i
\(712\) 0 0
\(713\) −7.06119 12.2303i −0.264444 0.458030i
\(714\) 0 0
\(715\) −1.23670 + 2.14203i −0.0462500 + 0.0801074i
\(716\) 0 0
\(717\) −20.2818 + 22.6312i −0.757439 + 0.845179i
\(718\) 0 0
\(719\) −16.5971 −0.618969 −0.309484 0.950905i \(-0.600156\pi\)
−0.309484 + 0.950905i \(0.600156\pi\)
\(720\) 0 0
\(721\) −14.6732 −0.546457
\(722\) 0 0
\(723\) −8.64690 26.4027i −0.321582 0.981926i
\(724\) 0 0
\(725\) 18.3024 31.7007i 0.679735 1.17734i
\(726\) 0 0
\(727\) 4.63973 + 8.03625i 0.172078 + 0.298048i 0.939146 0.343518i \(-0.111619\pi\)
−0.767068 + 0.641566i \(0.778285\pi\)
\(728\) 0 0
\(729\) 8.70209 + 25.5592i 0.322300 + 0.946638i
\(730\) 0 0
\(731\) 19.7257 + 34.1659i 0.729580 + 1.26367i
\(732\) 0 0
\(733\) −11.5406 + 19.9888i −0.426260 + 0.738304i −0.996537 0.0831483i \(-0.973502\pi\)
0.570277 + 0.821452i \(0.306836\pi\)
\(734\) 0 0
\(735\) 1.40436 + 4.28812i 0.0518007 + 0.158170i
\(736\) 0 0
\(737\) 50.0805 1.84474
\(738\) 0 0
\(739\) −53.0459 −1.95132 −0.975662 0.219279i \(-0.929629\pi\)
−0.975662 + 0.219279i \(0.929629\pi\)
\(740\) 0 0
\(741\) −4.53726 + 5.06284i −0.166680 + 0.185988i
\(742\) 0 0
\(743\) 15.3325 26.5567i 0.562495 0.974270i −0.434783 0.900535i \(-0.643175\pi\)
0.997278 0.0737346i \(-0.0234918\pi\)
\(744\) 0 0
\(745\) 5.71147 + 9.89255i 0.209252 + 0.362435i
\(746\) 0 0
\(747\) 0.883417 + 8.04391i 0.0323225 + 0.294311i
\(748\) 0 0
\(749\) 2.18775 + 3.78929i 0.0799387 + 0.138458i
\(750\) 0 0
\(751\) −5.26530 + 9.11977i −0.192134 + 0.332785i −0.945957 0.324292i \(-0.894874\pi\)
0.753823 + 0.657077i \(0.228207\pi\)
\(752\) 0 0
\(753\) −4.60744 0.968111i −0.167904 0.0352799i
\(754\) 0 0
\(755\) 7.29765 0.265589
\(756\) 0 0
\(757\) 3.52510 0.128122 0.0640610 0.997946i \(-0.479595\pi\)
0.0640610 + 0.997946i \(0.479595\pi\)
\(758\) 0 0
\(759\) −14.7599 3.10133i −0.535749 0.112571i
\(760\) 0 0
\(761\) −9.56064 + 16.5595i −0.346573 + 0.600282i −0.985638 0.168871i \(-0.945988\pi\)
0.639065 + 0.769152i \(0.279321\pi\)
\(762\) 0 0
\(763\) 8.73804 + 15.1347i 0.316338 + 0.547914i
\(764\) 0 0
\(765\) 6.99444 5.13179i 0.252884 0.185540i
\(766\) 0 0
\(767\) −0.315470 0.546410i −0.0113910 0.0197297i
\(768\) 0 0
\(769\) 12.0960 20.9509i 0.436194 0.755510i −0.561199 0.827681i \(-0.689660\pi\)
0.997392 + 0.0721716i \(0.0229929\pi\)
\(770\) 0 0
\(771\) 0.772417 0.861891i 0.0278179 0.0310402i
\(772\) 0 0
\(773\) −13.1466 −0.472851 −0.236425 0.971650i \(-0.575976\pi\)
−0.236425 + 0.971650i \(0.575976\pi\)
\(774\) 0 0
\(775\) 26.0033 0.934065
\(776\) 0 0
\(777\) 11.0023 + 33.5948i 0.394706 + 1.20521i
\(778\) 0 0
\(779\) −8.03994 + 13.9256i −0.288061 + 0.498936i
\(780\) 0 0
\(781\) 8.61837 + 14.9275i 0.308390 + 0.534147i
\(782\) 0 0
\(783\) −4.11024 + 41.9273i −0.146888 + 1.49836i
\(784\) 0 0
\(785\) 1.44729 + 2.50678i 0.0516560 + 0.0894707i
\(786\) 0 0
\(787\) 26.4594 45.8289i 0.943174 1.63363i 0.183807 0.982962i \(-0.441158\pi\)
0.759367 0.650663i \(-0.225509\pi\)
\(788\) 0 0
\(789\) −12.7737 39.0035i −0.454756 1.38856i
\(790\) 0 0
\(791\) −36.5005 −1.29781
\(792\) 0 0
\(793\) −1.11223 −0.0394963
\(794\) 0 0
\(795\) −4.57886 + 5.10926i −0.162395 + 0.181207i
\(796\) 0 0
\(797\) −1.94357 + 3.36637i −0.0688449 + 0.119243i −0.898393 0.439192i \(-0.855265\pi\)
0.829548 + 0.558435i \(0.188598\pi\)
\(798\) 0 0
\(799\) −25.2869 43.7981i −0.894585 1.54947i
\(800\) 0 0
\(801\) −19.3460 8.50544i −0.683557 0.300525i
\(802\) 0 0
\(803\) −0.333234 0.577179i −0.0117596 0.0203682i
\(804\) 0 0
\(805\) −1.54171 + 2.67032i −0.0543382 + 0.0941165i
\(806\) 0 0
\(807\) 0.571399 + 0.120062i 0.0201142 + 0.00422638i
\(808\) 0 0
\(809\) −42.6227 −1.49854 −0.749268 0.662267i \(-0.769594\pi\)
−0.749268 + 0.662267i \(0.769594\pi\)
\(810\) 0 0
\(811\) −6.30097 −0.221257 −0.110629 0.993862i \(-0.535286\pi\)
−0.110629 + 0.993862i \(0.535286\pi\)
\(812\) 0 0
\(813\) 12.3301 + 2.59079i 0.432436 + 0.0908631i
\(814\) 0 0
\(815\) 3.74227 6.48180i 0.131086 0.227048i
\(816\) 0 0
\(817\) −18.6486 32.3004i −0.652434 1.13005i
\(818\) 0 0
\(819\) 4.95832 + 2.17992i 0.173258 + 0.0761725i
\(820\) 0 0
\(821\) 8.21531 + 14.2293i 0.286716 + 0.496607i 0.973024 0.230704i \(-0.0741030\pi\)
−0.686308 + 0.727311i \(0.740770\pi\)
\(822\) 0 0
\(823\) −11.0820 + 19.1946i −0.386295 + 0.669083i −0.991948 0.126646i \(-0.959579\pi\)
0.605653 + 0.795729i \(0.292912\pi\)
\(824\) 0 0
\(825\) 18.5339 20.6808i 0.645267 0.720013i
\(826\) 0 0
\(827\) −7.17190 −0.249392 −0.124696 0.992195i \(-0.539795\pi\)
−0.124696 + 0.992195i \(0.539795\pi\)
\(828\) 0 0
\(829\) 34.2513 1.18960 0.594799 0.803875i \(-0.297232\pi\)
0.594799 + 0.803875i \(0.297232\pi\)
\(830\) 0 0
\(831\) −10.8686 33.1865i −0.377027 1.15123i
\(832\) 0 0
\(833\) 7.76453 13.4486i 0.269025 0.465965i
\(834\) 0 0
\(835\) −0.0726002 0.125747i −0.00251243 0.00435166i
\(836\) 0 0
\(837\) −27.2538 + 12.3634i −0.942028 + 0.427343i
\(838\) 0 0
\(839\) −18.2783 31.6590i −0.631038 1.09299i −0.987340 0.158619i \(-0.949296\pi\)
0.356302 0.934371i \(-0.384037\pi\)
\(840\) 0 0
\(841\) −18.3665 + 31.8116i −0.633326 + 1.09695i
\(842\) 0 0
\(843\) 8.02542 + 24.5050i 0.276410 + 0.843997i
\(844\) 0 0
\(845\) −0.696497 −0.0239602
\(846\) 0 0
\(847\) 2.90866 0.0999427
\(848\) 0 0
\(849\) −29.1084 + 32.4802i −0.998997 + 1.11472i
\(850\) 0 0
\(851\) 13.8595 24.0053i 0.475097 0.822891i
\(852\) 0 0
\(853\) −22.6160 39.1721i −0.774358 1.34123i −0.935155 0.354240i \(-0.884740\pi\)
0.160796 0.986988i \(-0.448594\pi\)
\(854\) 0 0
\(855\) −6.61254 + 4.85160i −0.226144 + 0.165921i
\(856\) 0 0
\(857\) 14.4563 + 25.0390i 0.493817 + 0.855317i 0.999975 0.00712441i \(-0.00226779\pi\)
−0.506157 + 0.862441i \(0.668934\pi\)
\(858\) 0 0
\(859\) −10.3717 + 17.9643i −0.353878 + 0.612934i −0.986925 0.161179i \(-0.948470\pi\)
0.633048 + 0.774113i \(0.281804\pi\)
\(860\) 0 0
\(861\) 12.5371 + 2.63429i 0.427264 + 0.0897764i
\(862\) 0 0
\(863\) −7.76234 −0.264233 −0.132116 0.991234i \(-0.542177\pi\)
−0.132116 + 0.991234i \(0.542177\pi\)
\(864\) 0 0
\(865\) 13.6964 0.465693
\(866\) 0 0
\(867\) −0.402181 0.0845060i −0.0136588 0.00286998i
\(868\) 0 0
\(869\) −6.49724 + 11.2536i −0.220404 + 0.381751i
\(870\) 0 0
\(871\) 7.05120 + 12.2130i 0.238921 + 0.413823i
\(872\) 0 0
\(873\) 4.55778 + 41.5006i 0.154257 + 1.40458i
\(874\) 0 0
\(875\) −5.98245 10.3619i −0.202244 0.350297i
\(876\) 0 0
\(877\) −0.956091 + 1.65600i −0.0322849 + 0.0559191i −0.881716 0.471780i \(-0.843612\pi\)
0.849432 + 0.527699i \(0.176945\pi\)
\(878\) 0 0
\(879\) −23.4173 + 26.1299i −0.789846 + 0.881340i
\(880\) 0 0
\(881\) −15.5972 −0.525484 −0.262742 0.964866i \(-0.584627\pi\)
−0.262742 + 0.964866i \(0.584627\pi\)
\(882\) 0 0
\(883\) −42.2610 −1.42220 −0.711098 0.703093i \(-0.751802\pi\)
−0.711098 + 0.703093i \(0.751802\pi\)
\(884\) 0 0
\(885\) −0.236895 0.723342i −0.00796314 0.0243149i
\(886\) 0 0
\(887\) −20.0105 + 34.6592i −0.671886 + 1.16374i 0.305483 + 0.952198i \(0.401182\pi\)
−0.977369 + 0.211543i \(0.932151\pi\)
\(888\) 0 0
\(889\) −2.64584 4.58273i −0.0887386 0.153700i
\(890\) 0 0
\(891\) −9.59234 + 30.4874i −0.321356 + 1.02137i
\(892\) 0 0
\(893\) 23.9062 + 41.4067i 0.799990 + 1.38562i
\(894\) 0 0
\(895\) −7.45427 + 12.9112i −0.249169 + 0.431573i
\(896\) 0 0
\(897\) −1.32183 4.03612i −0.0441347 0.134762i
\(898\) 0 0
\(899\) −46.6952 −1.55737
\(900\) 0 0
\(901\) 23.6118 0.786622
\(902\) 0 0
\(903\) −19.8316 + 22.1288i −0.659954 + 0.736401i
\(904\) 0 0
\(905\) −7.11089 + 12.3164i −0.236374 + 0.409412i
\(906\) 0 0
\(907\) 20.7794 + 35.9909i 0.689968 + 1.19506i 0.971848 + 0.235609i \(0.0757086\pi\)
−0.281880 + 0.959450i \(0.590958\pi\)
\(908\) 0 0
\(909\) −2.41858 22.0223i −0.0802192 0.730432i
\(910\) 0 0
\(911\) 10.8960 + 18.8723i 0.360999 + 0.625269i 0.988126 0.153649i \(-0.0491025\pi\)
−0.627127 + 0.778917i \(0.715769\pi\)
\(912\) 0 0
\(913\) −4.78955 + 8.29575i −0.158511 + 0.274549i
\(914\) 0 0
\(915\) −1.31308 0.275904i −0.0434091 0.00912109i
\(916\) 0 0
\(917\) −11.8405 −0.391008
\(918\) 0 0
\(919\) −35.2425 −1.16254 −0.581271 0.813710i \(-0.697445\pi\)
−0.581271 + 0.813710i \(0.697445\pi\)
\(920\) 0 0
\(921\) −19.9679 4.19564i −0.657964 0.138251i
\(922\) 0 0
\(923\) −2.42689 + 4.20349i −0.0798820 + 0.138360i
\(924\) 0 0
\(925\) 25.5192 + 44.2005i 0.839065 + 1.45330i
\(926\) 0 0
\(927\) 19.6579 14.4229i 0.645649 0.473710i
\(928\) 0 0
\(929\) 15.0106 + 25.9991i 0.492481 + 0.853002i 0.999962 0.00866066i \(-0.00275681\pi\)
−0.507482 + 0.861663i \(0.669423\pi\)
\(930\) 0 0
\(931\) −7.34059 + 12.7143i −0.240578 + 0.416693i
\(932\) 0 0
\(933\) −19.4506 + 21.7037i −0.636786 + 0.710549i
\(934\) 0 0
\(935\) 10.2690 0.335833
\(936\) 0 0
\(937\) 51.2435 1.67405 0.837026 0.547163i \(-0.184292\pi\)
0.837026 + 0.547163i \(0.184292\pi\)
\(938\) 0 0
\(939\) −8.86358 27.0643i −0.289252 0.883210i
\(940\) 0 0
\(941\) 2.04301 3.53860i 0.0666002 0.115355i −0.830802 0.556567i \(-0.812118\pi\)
0.897403 + 0.441212i \(0.145451\pi\)
\(942\) 0 0
\(943\) −5.02262 8.69943i −0.163559 0.283292i
\(944\) 0 0
\(945\) 5.31297 + 3.80357i 0.172831 + 0.123730i
\(946\) 0 0
\(947\) −17.3466 30.0453i −0.563690 0.976340i −0.997170 0.0751770i \(-0.976048\pi\)
0.433480 0.901163i \(-0.357286\pi\)
\(948\) 0 0
\(949\) 0.0938370 0.162531i 0.00304608 0.00527596i
\(950\) 0 0
\(951\) 7.49683 + 22.8910i 0.243101 + 0.742291i
\(952\) 0 0
\(953\) 0.656353 0.0212614 0.0106307 0.999943i \(-0.496616\pi\)
0.0106307 + 0.999943i \(0.496616\pi\)
\(954\) 0 0
\(955\) 10.9104 0.353054
\(956\) 0 0
\(957\) −33.2821 + 37.1374i −1.07586 + 1.20048i
\(958\) 0 0
\(959\) −14.7661 + 25.5757i −0.476823 + 0.825881i
\(960\) 0 0
\(961\) −1.08559 1.88030i −0.0350191 0.0606549i
\(962\) 0 0
\(963\) −6.65564 2.92614i −0.214475 0.0942937i
\(964\) 0 0
\(965\) 1.80410 + 3.12480i 0.0580761 + 0.100591i
\(966\) 0 0
\(967\) −18.4643 + 31.9812i −0.593773 + 1.02845i 0.399946 + 0.916539i \(0.369029\pi\)
−0.993719 + 0.111906i \(0.964304\pi\)
\(968\) 0 0
\(969\) 27.6225 + 5.80402i 0.887363 + 0.186452i
\(970\) 0 0
\(971\) 29.2096 0.937379 0.468690 0.883363i \(-0.344726\pi\)
0.468690 + 0.883363i \(0.344726\pi\)
\(972\) 0 0
\(973\) 38.4082 1.23131
\(974\) 0 0
\(975\) 7.65291 + 1.60802i 0.245089 + 0.0514980i
\(976\) 0 0
\(977\) −3.90425 + 6.76235i −0.124908 + 0.216347i −0.921697 0.387911i \(-0.873197\pi\)
0.796789 + 0.604258i \(0.206530\pi\)
\(978\) 0 0
\(979\) −12.5080 21.6645i −0.399758 0.692401i
\(980\) 0 0
\(981\) −26.5831 11.6872i −0.848734 0.373145i
\(982\) 0 0
\(983\) −21.8145 37.7839i −0.695775 1.20512i −0.969919 0.243429i \(-0.921728\pi\)
0.274143 0.961689i \(-0.411606\pi\)
\(984\) 0 0
\(985\) −1.72184 + 2.98232i −0.0548624 + 0.0950245i
\(986\) 0 0
\(987\) 25.4226 28.3675i 0.809211 0.902947i
\(988\) 0 0
\(989\) 23.2999 0.740895
\(990\) 0 0
\(991\) −1.46775 −0.0466247 −0.0233123 0.999728i \(-0.507421\pi\)
−0.0233123 + 0.999728i \(0.507421\pi\)
\(992\) 0 0
\(993\) −11.0219 33.6546i −0.349770 1.06800i
\(994\) 0 0
\(995\) 6.35652 11.0098i 0.201515 0.349034i
\(996\) 0 0
\(997\) −12.9705 22.4655i −0.410779 0.711489i 0.584197 0.811612i \(-0.301410\pi\)
−0.994975 + 0.100123i \(0.968076\pi\)
\(998\) 0 0
\(999\) −47.7618 34.1928i −1.51112 1.08181i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.q.d.625.2 yes 12
3.2 odd 2 2808.2.q.d.1873.3 12
9.2 odd 6 2808.2.q.d.937.3 12
9.4 even 3 8424.2.a.v.1.3 6
9.5 odd 6 8424.2.a.u.1.4 6
9.7 even 3 inner 936.2.q.d.313.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.q.d.313.2 12 9.7 even 3 inner
936.2.q.d.625.2 yes 12 1.1 even 1 trivial
2808.2.q.d.937.3 12 9.2 odd 6
2808.2.q.d.1873.3 12 3.2 odd 2
8424.2.a.u.1.4 6 9.5 odd 6
8424.2.a.v.1.3 6 9.4 even 3